<< Chapter < Page Chapter >> Page >
This module emphasizes software quality engineering as an integral facet of development, from requirements through delivery and maintenance. We will understand how to choose appropriate quality goals and select, plan, and execute quality assurance activities throughout development and evolution to predictably meet quality and schedule goals. We introduce also how quality assurance can be incorporated into process improvement feedback loops that amplify the ability of an organization to cost-effectively prevent and detect faults.

Introduction

What is software quality, and why is it so important that it is pervasive in the Software Engineering Body of Knowledge? Within an information system, software is a tool, and tools have to be selected for quality and for appropriateness. That is the role of equirements. But software is more than a tool. It dictates the performance of the system, and it is therefore important to the system quality.

The notion of “quality” is not as simple as it may seem. For any engineered product, there are many desired qualities relevant to a particular project, to be discussed and determined at the time that the product requirements are determined. Qualities may be present or absent, or may be matters of degree, with tradeoffs among them, with practicality and cost as major considerations. The software engineer has a responsibility to elicit the system’s quality requirements that may not be explicit at the outset and to discuss their importance and the difficulty of attaining them. All processes associated with software quality (e.g. building, checking, improving quality) will be designed with these in mind

and carry costs based on the design. Thus, it is important to have in mind some of the possible attributes of quality.

Various researchers have produced models (usually taxonomic) of software quality characteristics or attributes that can be useful for discussing, planning, and rating the quality of software products. The models often include metrics to “measure” the degree of each quality attribute the product attains.

Usually these metrics may be applied at any of the product levels. They are not always direct measures of the quality characteristics of the finished product, but may be relevant to the achievement of overall quality. Each model may have a different set of attributes at the highest level of the taxonomy, and selection of and definitions for the attributes at all levels may differ. The important point is that the system software requirements define the quality requirements and the definitions of the attributes for them.

Software quality fundamentals

Agreement on quality requirements, as well as clear communication to the software engineer on what constitutes quality, require that the many aspects of quality be formally defined and discussed.

A software engineer should understand the underlying meanings of quality concepts and characteristics and their value to the software under development or to maintenance.

The important concept is that the software requirements define the required quality characteristics of the software and influence the measurement methods and acceptance criteria for assessing these characteristics.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask