<< Chapter < Page Chapter >> Page >

Finding instantaneous rates of change

Many applications of the derivative involve determining the rate of change at a given instant of a function with the independent variable time—which is why the term instantaneous is used. Consider the height of a ball tossed upward with an initial velocity of 64 feet per second, given by s ( t ) = −16 t 2 + 64 t + 6 , where t is measured in seconds and s ( t ) is measured in feet. We know the path is that of a parabola. The derivative will tell us how the height is changing at any given point in time. The height of the ball is shown in [link] as a function of time. In physics, we call this the “ s - t graph.”

Graph of a negative parabola with a vertex at (2, 70) and two points at (1, 55) and (3, 55).

Finding the instantaneous rate of change

Using the function above, s ( t ) = −16 t 2 + 64 t + 6 , what is the instantaneous velocity of the ball at 1 second and 3 seconds into its flight?

The velocity at t = 1 and t = 3 is the instantaneous rate of change of distance per time, or velocity. Notice that the initial height is 6 feet. To find the instantaneous velocity, we find the derivative    and evaluate it at t = 1 and t = 3 :

f ( a ) = lim h 0 f ( a + h ) f ( a ) h          = lim h 0 16 ( t + h ) 2 + 64 ( t + h ) + 6 ( 16 t 2 + 64 t + 6 ) h Substitute  s ( t + h )  and  s ( t ) .          = lim h 0 16 t 2 32 h t h 2 + 64 t + 64 h + 6 + 16 t 2 64 t 6 h Distribute .          = lim h 0 32 h t h 2 + 64 h h Simplify .          = lim h 0 h ( 32 t h + 64 ) h Factor the numerator .          = lim h 0 32 t h + 64 Cancel out the common factor  h . s ( t ) = 32 t + 64 Evaluate the limit by letting  h = 0.

For any value of t , s ( t ) tells us the velocity at that value of t .

Evaluate t = 1 and t = 3.

s ( 1 ) = −32 ( 1 ) + 64 = 32 s ( 3 ) = −32 ( 3 ) + 64 = −32

The velocity of the ball after 1 second is 32 feet per second, as it is on the way up.

The velocity of the ball after 3 seconds is −32 feet per second, as it is on the way down.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

The position of the ball is given by s ( t ) = −16 t 2 + 64 t + 6. What is its velocity 2 seconds into flight?

0

Got questions? Get instant answers now!

Using graphs to find instantaneous rates of change

We can estimate an instantaneous rate of change at x = a by observing the slope of the curve of the function f ( x ) at x = a . We do this by drawing a line tangent to the function at x = a and finding its slope.

Given a graph of a function f ( x ) , find the instantaneous rate of change of the function at x = a .

  1. Locate x = a on the graph of the function f ( x ) .
  2. Draw a tangent line, a line that goes through x = a at a and at no other point in that section of the curve. Extend the line far enough to calculate its slope as
    change in  y change in  x .

Estimating the derivative at a point on the graph of a function

From the graph of the function y = f ( x ) presented in [link] , estimate each of the following:

  1. f ( 0 )
  2. f ( 2 )
  3. f ' ( 0 )
  4. f ' ( 2 )

Graph of an odd function with multiplicity of two and with two points at (0, 1) and (2, 1).

To find the functional value, f ( a ) , find the y -coordinate at x = a .

To find the derivative    at x = a , f ( a ) , draw a tangent line at x = a , and estimate the slope of that tangent line. See [link] .

Graph of the previous function with tangent lines at the two points (0, 1) and (2, 1). The graph demonstrates the slopes of the tangent lines. The slope of the tangent line at x = 0 is 0, and the slope of the tangent line at x = 2 is 4.
  1. f ( 0 ) is the y -coordinate at x = 0. The point has coordinates ( 0 , 1 ) , thus f ( 0 ) = 1.
  2. f ( 2 ) is the y -coordinate at x = 2. The point has coordinates ( 2 , 1 ) , thus f ( 2 ) = 1.
  3. f ( 0 ) is found by estimating the slope of the tangent line to the curve at x = 0. The tangent line to the curve at x = 0 appears horizontal. Horizontal lines have a slope of 0, thus f ( 0 ) = 0.
  4. f ( 2 ) is found by estimating the slope of the tangent line to the curve at x = 2. Observe the path of the tangent line to the curve at x = 2. As the x value moves one unit to the right, the y value moves up four units to another point on the line. Thus, the slope is 4, so f ( 2 ) = 4.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask