<< Chapter < Page Chapter >> Page >

From the Pythagorean Theorem, we get

x 2 + y 2 = 1

Substituting x = 1 2 , we get

( 1 2 ) 2 + y 2 = 1

Solving for y , we get

1 4 + y 2 = 1         y 2 = 1 1 4         y 2 = 3 4           y = ± 3 2

Since t = π 3 has the terminal side in quadrant I where the y- coordinate is positive, we choose y = 3 2 , the positive value.

At t = π 3 (60°), the ( x , y ) coordinates for the point on a circle of radius 1 at an angle of 60° are ( 1 2 , 3 2 ) , so we can find the sine and cosine.

( x , y ) = ( 1 2 , 3 2 ) x = 1 2 , y = 3 2 cos t = 1 2 , sin t = 3 2

We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant of the unit circle. [link] summarizes these values.

Angle 0 π 6 , or 30 π 4 , or 45° π 3 , or 60° π 2 , or 90°
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1

[link] shows the common angles in the first quadrant of the unit circle.

Graph of a quarter circle with angles of 0, 30, 45, 60, and 90 degrees inscribed. Equivalence of angles in radians shown. Points along circle are marked.

Using a calculator to find sine and cosine

To find the cosine and sine of angles other than the special angles , we turn to a computer or calculator. Be aware : Most calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When we evaluate cos ( 30 ) on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the cosine of 30 radians if the calculator is in radian mode.

Given an angle in radians, use a graphing calculator to find the cosine.

  1. If the calculator has degree mode and radian mode, set it to radian mode.
  2. Press the COS key.
  3. Enter the radian value of the angle and press the close-parentheses key ")".
  4. Press ENTER.

Using a graphing calculator to find sine and cosine

Evaluate cos ( 5 π 3 ) using a graphing calculator or computer.

Enter the following keystrokes:

COS (   5   ×   π   ÷  3 ) ENTER

cos ( 5 π 3 ) = 0.5
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate sin ( π 3 ) .

approximately 0.866025403

Got questions? Get instant answers now!

Identifying the domain and range of sine and cosine functions

Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the domains of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the functions? Because angles smaller than 0 and angles larger than 2 π can still be graphed on the unit circle and have real values of x , y , and r , there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions. The input to the sine and cosine functions is the rotation from the positive x -axis, and that may be any real number.

What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output? We can see the answers by examining the unit circle    , as shown in [link] . The bounds of the x -coordinate are [ −1 , 1 ] . The bounds of the y -coordinate are also [ −1 , 1 ] . Therefore, the range of both the sine and cosine functions is [ −1 , 1 ] .

Graph of unit circle.

Finding reference angles

We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value. Because the sine value is the y -coordinate on the unit circle, the other angle with the same sine will share the same y -value, but have the opposite x -value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask