<< Chapter < Page Chapter >> Page >

So how can we decide if a function is continuous at a particular number? We can check three different conditions. Let’s use the function y = f ( x ) represented in [link] as an example.

Graph of an increasing function with a discontinuity at (a, f(a)).

Condition 1 According to Condition 1, the function f ( a ) defined at x = a must exist. In other words, there is a y -coordinate at x = a as in [link] .

Graph of an increasing function with a discontinuity at (a, 2). The point (a, f(a)) is directly below the hole.

Condition 2 According to Condition 2, at x = a the limit, written lim x a f ( x ) , must exist. This means that at x = a the left-hand limit must equal the right-hand limit. Notice as the graph of f in [link] approaches x = a from the left and right, the same y -coordinate is approached. Therefore, Condition 2 is satisfied. However, there could still be a hole in the graph at x = a .

Condition 3 According to Condition 3, the corresponding y coordinate at x = a fills in the hole in the graph of f . This is written lim x a f ( x ) = f ( a ) .

Satisfying all three conditions means that the function is continuous. All three conditions are satisfied for the function represented in [link] so the function is continuous as x = a .

Graph of an increasing function with filled-in discontinuity at (a, f(a)).
All three conditions are satisfied. The function is continuous at x = a .

[link] through [link] provide several examples of graphs of functions that are not continuous at x = a and the condition or conditions that fail.

Graph of an increasing function with a discontinuity at (a, f(a)).
Condition 2 is satisfied. Conditions 1 and 3 both fail.
Graph of an increasing function with a discontinuity at (a, 2). The point (a, f(a)) is directly below the hole.
Conditions 1 and 2 are both satisfied. Condition 3 fails.
Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)), which is closed, and another increasing segment from (a, f(a)-1), which is open, to positive infinity.
Condition 1 is satisfied. Conditions 2 and 3 fail.
Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)) and another increasing segment from (a, f(a) - 1) to positive infinity. This graph does not include the point (a, f(a)).
Conditions 1, 2, and 3 all fail.

Definition of continuity

A function f ( x ) is continuous at x = a provided all three of the following conditions hold true:

  • Condition 1: f ( a ) exists.
  • Condition 2: lim x a f ( x ) exists at x = a .
  • Condition 3: lim x a f ( x ) = f ( a ) .

If a function f ( x ) is not continuous at x = a , the function is discontinuous at x = a .

Identifying a jump discontinuity

Discontinuity can occur in different ways. We saw in the previous section that a function could have a left-hand limit    and a right-hand limit    even if they are not equal. If the left- and right-hand limits exist but are different, the graph “jumps” at x = a . The function is said to have a jump discontinuity.

As an example, look at the graph of the function y = f ( x ) in [link] . Notice as x approaches a how the output approaches different values from the left and from the right.

Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)), which is closed, and another increasing segment from (a, f(a)-1), which is open, to positive infinity.
Graph of a function with a jump discontinuity.

Jump discontinuity

A function f ( x ) has a jump discontinuity    at x = a if the left- and right-hand limits both exist but are not equal: lim x a f ( x ) lim x a + f ( x ) .

Identifying removable discontinuity

Some functions have a discontinuity, but it is possible to redefine the function at that point to make it continuous. This type of function is said to have a removable discontinuity. Let’s look at the function y = f ( x ) represented by the graph in [link] . The function has a limit. However, there is a hole at x = a . The hole can be filled by extending the domain to include the input x = a and defining the corresponding output of the function at that value as the limit of the function at x = a .

Graph of an increasing function with a removable discontinuity at (a, f(a)).
Graph of function f with a removable discontinuity at x = a .

Removable discontinuity

A function f ( x ) has a removable discontinuity    at x = a if the limit, lim x a f ( x ) , exists, but either

  1. f ( a ) does not exist or
  2. f ( a ) , the value of the function at x = a does not equal the limit, f ( a ) lim x a f ( x ) .

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask