<< Chapter < Page Chapter >> Page >

Deriving the equation of an ellipse centered at the origin

Let ( c , 0 ) and ( c , 0 ) be the foci    of a hyperbola centered at the origin. The hyperbola is the set of all points ( x , y ) such that the difference of the distances from ( x , y ) to the foci is constant. See [link] .

If ( a , 0 ) is a vertex of the hyperbola, the distance from ( c , 0 ) to ( a , 0 ) is a ( c ) = a + c . The distance from ( c , 0 ) to ( a , 0 ) is c a . The sum of the distances from the foci to the vertex is

( a + c ) ( c a ) = 2 a

If ( x , y ) is a point on the hyperbola, we can define the following variables:

d 2 = the distance from  ( c , 0 )  to  ( x , y ) d 1 = the distance from  ( c , 0 )  to  ( x , y )

By definition of a hyperbola, d 2 d 1 is constant for any point ( x , y ) on the hyperbola. We know that the difference of these distances is 2 a for the vertex ( a , 0 ) . It follows that d 2 d 1 = 2 a for any point on the hyperbola. As with the derivation of the equation of an ellipse, we will begin by applying the distance formula . The rest of the derivation is algebraic. Compare this derivation with the one from the previous section for ellipses.

                                       d 2 d 1 = ( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a Distance Formula ( x + c ) 2 + y 2 ( x c ) 2 + y 2 = 2 a Simplify expressions .                             ( x + c ) 2 + y 2 = 2 a + ( x c ) 2 + y 2 Move radical to opposite side .                               ( x + c ) 2 + y 2 = ( 2 a + ( x c ) 2 + y 2 ) 2 Square both sides .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 + ( x c ) 2 + y 2 Expand the squares .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 + x 2 2 c x + c 2 + y 2 Expand remaining square .                                               2 c x = 4 a 2 + 4 a ( x c ) 2 + y 2 2 c x Combine like terms .                                    4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 Isolate the radical .                                        c x a 2 = a ( x c ) 2 + y 2 Divide by 4 .                                    ( c x a 2 ) 2 = a 2 [ ( x c ) 2 + y 2 ] 2 Square both sides .                      c 2 x 2 2 a 2 c x + a 4 = a 2 ( x 2 2 c x + c 2 + y 2 ) Expand the squares .                     c 2 x 2 2 a 2 c x + a 4 = a 2 x 2 2 a 2 c x + a 2 c 2 + a 2 y 2 Distribute  a 2 .                                    a 4 + c 2 x 2 = a 2 x 2 + a 2 c 2 + a 2 y 2 Combine like terms .                   c 2 x 2 a 2 x 2 a 2 y 2 = a 2 c 2 a 4 Rearrange terms .                     x 2 ( c 2 a 2 ) a 2 y 2 = a 2 ( c 2 a 2 ) Factor common terms .                               x 2 b 2 a 2 y 2 = a 2 b 2 Set  b 2 = c 2 a 2 .                              x 2 b 2 a 2 b 2 a 2 y 2 a 2 b 2 = a 2 b 2 a 2 b 2 Divide both sides by  a 2 b 2                                      x 2 a 2 y 2 b 2 = 1

This equation defines a hyperbola centered at the origin with vertices ( ± a , 0 ) and co-vertices ( 0 ± b ) .

Standard forms of the equation of a hyperbola with center (0,0)

The standard form of the equation of a hyperbola with center ( 0 , 0 ) and transverse axis on the x -axis is

x 2 a 2 y 2 b 2 = 1

where

  • the length of the transverse axis is 2 a
  • the coordinates of the vertices are ( ± a , 0 )
  • the length of the conjugate axis is 2 b
  • the coordinates of the co-vertices are ( 0, ± b )
  • the distance between the foci is 2 c , where c 2 = a 2 + b 2
  • the coordinates of the foci are ( ± c , 0 )
  • the equations of the asymptotes are y = ± b a x

See [link] a .

The standard form of the equation of a hyperbola with center ( 0 , 0 ) and transverse axis on the y -axis is

y 2 a 2 x 2 b 2 = 1

where

  • the length of the transverse axis is 2 a
  • the coordinates of the vertices are ( 0, ± a )
  • the length of the conjugate axis is 2 b
  • the coordinates of the co-vertices are ( ± b , 0 )
  • the distance between the foci is 2 c , where c 2 = a 2 + b 2
  • the coordinates of the foci are ( 0, ± c )
  • the equations of the asymptotes are y = ± a b x

See [link] b .

Note that the vertices, co-vertices, and foci are related by the equation c 2 = a 2 + b 2 . When we are given the equation of a hyperbola, we can use this relationship to identify its vertices and foci.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask