<< Chapter < Page Chapter >> Page >

Performing algebraic operations on functions

Find and simplify the functions ( g f ) ( x ) and ( g f ) ( x ) , given f ( x ) = x 1 and g ( x ) = x 2 1. Are they the same function?

Begin by writing the general form, and then substitute the given functions.

( g f ) ( x ) = g ( x ) f ( x ) ( g f ) ( x ) = x 2 1 ( x 1 )                  = x 2 x                  = x ( x 1 )       ( g f ) ( x ) = g ( x ) f ( x )       ( g f ) ( x ) = x 2 1 x 1                  = ( x + 1 ) ( x 1 ) x 1       where  x 1                  = x + 1

No, the functions are not the same.

Note: For ( g f ) ( x ) , the condition x 1 is necessary because when x = 1 , the denominator is equal to 0, which makes the function undefined.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find and simplify the functions ( f g ) ( x ) and ( f g ) ( x ) .

f ( x ) = x 1     and     g ( x ) = x 2 1

Are they the same function?

( f g ) ( x ) = f ( x ) g ( x ) = ( x 1 ) ( x 2 1 ) = x 3 x 2 x + 1 ( f g ) ( x ) = f ( x ) g ( x ) = ( x 1 ) ( x 2 1 ) = x x 2

No, the functions are not the same.

Got questions? Get instant answers now!

Create a function by composition of functions

Performing algebraic operations on functions combines them into a new function, but we can also create functions by composing functions. When we wanted to compute a heating cost from a day of the year, we created a new function that takes a day as input and yields a cost as output. The process of combining functions so that the output of one function becomes the input of another is known as a composition of functions . The resulting function is known as a composite function . We represent this combination by the following notation:

( f g ) ( x ) = f ( g ( x ) )

We read the left-hand side as f composed with g at x ,” and the right-hand side as f of g of x . The two sides of the equation have the same mathematical meaning and are equal. The open circle symbol is called the composition operator. We use this operator mainly when we wish to emphasize the relationship between the functions themselves without referring to any particular input value. Composition is a binary operation that takes two functions and forms a new function, much as addition or multiplication takes two numbers and gives a new number. However, it is important not to confuse function composition with multiplication because, as we learned above, in most cases f ( g ( x ) ) f ( x ) g ( x ) .

It is also important to understand the order of operations in evaluating a composite function. We follow the usual convention with parentheses by starting with the innermost parentheses first, and then working to the outside. In the equation above, the function g takes the input x first and yields an output g ( x ) . Then the function f takes g ( x ) as an input and yields an output f ( g ( x ) ) .

Explanation of the composite function.

In general, f g and g f are different functions. In other words, in many cases f ( g ( x ) ) g ( f ( x ) ) for all x . We will also see that sometimes two functions can be composed only in one specific order.

For example, if f ( x ) = x 2 and g ( x ) = x + 2 , then

    f ( g ( x ) ) = f ( x + 2 )                 = ( x + 2 ) 2                 = x 2 + 4 x + 4

but

    g ( f ( x ) ) = g ( x 2 )                 = x 2 + 2

These expressions are not equal for all values of x , so the two functions are not equal. It is irrelevant that the expressions happen to be equal for the single input value x = 1 2 .

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of the outside function. Less formally, the composition has to make sense in terms of inputs and outputs.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask