<< Chapter < Page Chapter >> Page >

Finding the n Th root of a complex number

Evaluate the cube roots of z = 8 ( cos ( 2 π 3 ) + i sin ( 2 π 3 ) ) .

We have

z 1 3 = 8 1 3 [ cos ( 2 π 3 3 + 2 k π 3 ) + i sin ( 2 π 3 3 + 2 k π 3 ) ] z 1 3 = 2 [ cos ( 2 π 9 + 2 k π 3 ) + i sin ( 2 π 9 + 2 k π 3 ) ]

There will be three roots: k = 0 , 1 , 2. When k = 0 , we have

z 1 3 = 2 ( cos ( 2 π 9 ) + i sin ( 2 π 9 ) )

When k = 1 , we have

z 1 3 = 2 [ cos ( 2 π 9 + 6 π 9 ) + i sin ( 2 π 9 + 6 π 9 ) ]     Add  2 ( 1 ) π 3  to each angle. z 1 3 = 2 ( cos ( 8 π 9 ) + i sin ( 8 π 9 ) )

When k = 2 , we have

z 1 3 = 2 [ cos ( 2 π 9 + 12 π 9 ) + i sin ( 2 π 9 + 12 π 9 ) ] Add  2 ( 2 ) π 3  to each angle. z 1 3 = 2 ( cos ( 14 π 9 ) + i sin ( 14 π 9 ) )

Remember to find the common denominator to simplify fractions in situations like this one. For k = 1 , the angle simplification is

2 π 3 3 + 2 ( 1 ) π 3 = 2 π 3 ( 1 3 ) + 2 ( 1 ) π 3 ( 3 3 ) = 2 π 9 + 6 π 9 = 8 π 9
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the four fourth roots of 16 ( cos ( 120° ) + i sin ( 120° ) ) .

z 0 = 2 ( cos ( 30° ) + i sin ( 30° ) )

z 1 = 2 ( cos ( 120° ) + i sin ( 120° ) )

z 2 = 2 ( cos ( 210° ) + i sin ( 210° ) )

z 3 = 2 ( cos ( 300° ) + i sin ( 300° ) )

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with polar forms of complex numbers.

Key concepts

  • Complex numbers in the form a + b i are plotted in the complex plane similar to the way rectangular coordinates are plotted in the rectangular plane. Label the x- axis as the real axis and the y- axis as the imaginary axis. See [link] .
  • The absolute value of a complex number is the same as its magnitude. It is the distance from the origin to the point: | z | = a 2 + b 2 . See [link] and [link] .
  • To write complex numbers in polar form, we use the formulas x = r cos θ , y = r sin θ , and r = x 2 + y 2 . Then, z = r ( cos θ + i sin θ ) . See [link] and [link] .
  • To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply through by r . See [link] and [link] .
  • To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate the trigonometric functions, and multiply using the distributive property. See [link] .
  • To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the difference of the two angles. See [link] .
  • To find the power of a complex number z n , raise r to the power n , and multiply θ by n . See [link] .
  • Finding the roots of a complex number is the same as raising a complex number to a power, but using a rational exponent. See [link] .

Section exercises

Verbal

A complex number is a + b i . Explain each part.

a is the real part, b is the imaginary part, and i = 1

Got questions? Get instant answers now!

What does the absolute value of a complex number represent?

Got questions? Get instant answers now!

How is a complex number converted to polar form?

Polar form converts the real and imaginary part of the complex number in polar form using x = r cos θ and y = r sin θ .

Got questions? Get instant answers now!

How do we find the product of two complex numbers?

Got questions? Get instant answers now!

What is De Moivre’s Theorem and what is it used for?

z n = r n ( cos ( n θ ) + i sin ( n θ ) ) It is used to simplify polar form when a number has been raised to a power.

Got questions? Get instant answers now!

Algebraic

For the following exercises, find the absolute value of the given complex number.

For the following exercises, write the complex number in polar form.

8 4 i

4 5 cis ( 333.4° )

Got questions? Get instant answers now!

For the following exercises, convert the complex number from polar to rectangular form.

z = 7 cis ( π 6 )

7 3 2 + i 7 2

Got questions? Get instant answers now!

z = 4 cis ( 7 π 6 )

2 3 2 i

Got questions? Get instant answers now!

z = 3 cis ( 240° )

1.5 i 3 3 2

Got questions? Get instant answers now!

For the following exercises, find z 1 z 2 in polar form.

z 1 = 2 3 cis ( 116° ) ;   z 2 = 2 cis ( 82° )

4 3 cis ( 198° )

Got questions? Get instant answers now!

z 1 = 2 cis ( 205° ) ;   z 2 = 2 2 cis ( 118° )

Got questions? Get instant answers now!

z 1 = 3 cis ( 120° ) ;   z 2 = 1 4 cis ( 60° )

3 4 cis ( 180° )

Got questions? Get instant answers now!

z 1 = 3 cis ( π 4 ) ;   z 2 = 5 cis ( π 6 )

Got questions? Get instant answers now!

z 1 = 5 cis ( 5 π 8 ) ;   z 2 = 15 cis ( π 12 )

5 3 cis ( 17 π 24 )

Got questions? Get instant answers now!

z 1 = 4 cis ( π 2 ) ;   z 2 = 2 cis ( π 4 )

Got questions? Get instant answers now!

For the following exercises, find z 1 z 2 in polar form.

z 1 = 21 cis ( 135° ) ;   z 2 = 3 cis ( 65° )

7 cis ( 70° )

Got questions? Get instant answers now!

z 1 = 2 cis ( 90° ) ;   z 2 = 2 cis ( 60° )

Got questions? Get instant answers now!

z 1 = 15 cis ( 120° ) ;   z 2 = 3 cis ( 40° )

5 cis ( 80° )

Got questions? Get instant answers now!

z 1 = 6 cis ( π 3 ) ;   z 2 = 2 cis ( π 4 )

Got questions? Get instant answers now!

z 1 = 5 2 cis ( π ) ;   z 2 = 2 cis ( 2 π 3 )

5 cis ( π 3 )

Got questions? Get instant answers now!

z 1 = 2 cis ( 3 π 5 ) ;   z 2 = 3 cis ( π 4 )

Got questions? Get instant answers now!

For the following exercises, find the powers of each complex number in polar form.

Find z 3 when z = 5 cis ( 45° ) .

125 cis ( 135° )

Got questions? Get instant answers now!

Find z 4 when z = 2 cis ( 70° ) .

Got questions? Get instant answers now!

Find z 2 when z = 3 cis ( 120° ) .

9 cis ( 240° )

Got questions? Get instant answers now!

Find z 2 when z = 4 cis ( π 4 ) .

Got questions? Get instant answers now!

Find z 4 when z = cis ( 3 π 16 ) .

cis ( 3 π 4 )

Got questions? Get instant answers now!

Find z 3 when z = 3 cis ( 5 π 3 ) .

Got questions? Get instant answers now!

For the following exercises, evaluate each root.

Evaluate the cube root of z when z = 27 cis ( 240° ) .

3 cis ( 80° ) , 3 cis ( 200° ) , 3 cis ( 320° )

Got questions? Get instant answers now!

Evaluate the square root of z when z = 16 cis ( 100° ) .

Got questions? Get instant answers now!

Evaluate the cube root of z when z = 32 cis ( 2 π 3 ) .

2 4 3 cis ( 2 π 9 ) , 2 4 3 cis ( 8 π 9 ) , 2 4 3 cis ( 14 π 9 )

Got questions? Get instant answers now!

Evaluate the square root of z when z = 32 cis ( π ) .

Got questions? Get instant answers now!

Evaluate the cube root of z when z = 8 cis ( 7 π 4 ) .

2 2 cis ( 7 π 8 ) , 2 2 cis ( 15 π 8 )

Got questions? Get instant answers now!

Graphical

For the following exercises, plot the complex number in the complex plane.

Technology

For the following exercises, find all answers rounded to the nearest hundredth.

Use the rectangular to polar feature on the graphing calculator to change 5 + 5 i to polar form.

Got questions? Get instant answers now!

Use the rectangular to polar feature on the graphing calculator to change 3 2 i to polar form.

3.61 e 0.59 i

Got questions? Get instant answers now!

Use the rectangular to polar feature on the graphing calculator to change 3 8 i to polar form.

Got questions? Get instant answers now!

Use the polar to rectangular feature on the graphing calculator to change 4 cis ( 120° ) to rectangular form.

2 + 3.46 i

Got questions? Get instant answers now!

Use the polar to rectangular feature on the graphing calculator to change 2 cis ( 45° ) to rectangular form.

Got questions? Get instant answers now!

Use the polar to rectangular feature on the graphing calculator to change 5 cis ( 210° ) to rectangular form.

4.33 2.50 i

Got questions? Get instant answers now!

Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
Please you teach
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask