# 6.6 Exponential and logarithmic equations

 Page 1 / 8
In this section, you will:
• Use like bases to solve exponential equations.
• Use logarithms to solve exponential equations.
• Use the definition of a logarithm to solve logarithmic equations.
• Use the one-to-one property of logarithms to solve logarithmic equations.
• Solve applied problems involving exponential and logarithmic equations.

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because Australia had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions. Equations resulting from those exponential functions can be solved to analyze and make predictions about exponential growth. In this section, we will learn techniques for solving exponential functions.

## Using like bases to solve exponential equations

The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions tells us that, for any real numbers $\text{\hspace{0.17em}}b,$ $S,$ and $\text{\hspace{0.17em}}T,$ where ${b}^{S}={b}^{T}\text{\hspace{0.17em}}$ if and only if $\text{\hspace{0.17em}}S=T.$

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions are one-to-one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation $\text{\hspace{0.17em}}{3}^{4x-7}=\frac{{3}^{2x}}{3}.\text{\hspace{0.17em}}$ To solve for $\text{\hspace{0.17em}}x,$ we use the division property of exponents to rewrite the right side so that both sides have the common base, $\text{\hspace{0.17em}}3.\text{\hspace{0.17em}}$ Then we apply the one-to-one property of exponents by setting the exponents equal to one another and solving for $\text{\hspace{0.17em}}x:$

## Using the one-to-one property of exponential functions to solve exponential equations

For any algebraic expressions and any positive real number $\text{\hspace{0.17em}}b\ne 1,$

Given an exponential equation with the form $\text{\hspace{0.17em}}{b}^{S}={b}^{T},$ where $\text{\hspace{0.17em}}S\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}T\text{\hspace{0.17em}}$ are algebraic expressions with an unknown, solve for the unknown.

1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form $\text{\hspace{0.17em}}{b}^{S}={b}^{T}.$
2. Use the one-to-one property to set the exponents equal.
3. Solve the resulting equation, $\text{\hspace{0.17em}}S=T,$ for the unknown.

## Solving an exponential equation with a common base

Solve $\text{\hspace{0.17em}}{2}^{x-1}={2}^{2x-4}.$

Solve $\text{\hspace{0.17em}}{5}^{2x}={5}^{3x+2}.$

$x=-2$

#### Questions & Answers

if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
madras university algebra questions papers first year B. SC. maths
Kanniyappan Reply
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
Michael Reply
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
rajan Reply
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
Ching Reply
give me some important question in tregnamentry
Anshuman
what is linear equation with one unknown 2x+5=3
Joan Reply
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
Adityasuman x= - 1
Aditya
y=x+1
gary
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
Shadow Reply
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Please see ***imgur.com/a/lpTpDZk for solutions
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Marjun Reply
factor or use quadratic formula
Wilson
what is algebra
Ige Reply
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
Martin Reply
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
Yanah Reply
hi
John
hi
Grace
what sup friend
John
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
Grace
sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
Umesh Reply
acha se dhek ke bata sin theta ke value
Ajay
sin theta ke ja gha sin square theta hoga
Ajay

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By By Lakeima Roberts By By Eric Crawford