<< Chapter < Page Chapter >> Page >
Two oblique triangles with standard labels. Both have a dotted altitude line h extended from angle beta to the horizontal base side b. In the first, which is an acute triangle, the altitude is within the triangle. In the second, which is an obtuse triangle, the altitude h is outside of the triangle.

Thus,

Area = 1 2 ( base ) ( height ) = 1 2 b ( c sin α )

Similarly,

Area = 1 2 a ( b sin γ ) = 1 2 a ( c sin β )

Area of an oblique triangle

The formula for the area of an oblique triangle is given by

Area = 1 2 b c sin α = 1 2 a c sin β = 1 2 a b sin γ

This is equivalent to one-half of the product of two sides and the sine of their included angle.

Finding the area of an oblique triangle

Find the area of a triangle with sides a = 90 , b = 52 , and angle γ = 102° . Round the area to the nearest integer.

Using the formula, we have

Area = 1 2 a b sin γ Area = 1 2 ( 90 ) ( 52 ) sin ( 102° ) Area 2289 square units
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the area of the triangle given β = 42° , a = 7.2 ft , c = 3.4 ft . Round the area to the nearest tenth.

about 8.2 square feet

Got questions? Get instant answers now!

Solving applied problems using the law of sines

The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat, diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and motion.

Finding an altitude

Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in [link] . Round the altitude to the nearest tenth of a mile.

A diagram of a triangle where the vertices are the first ground station, the second ground station, and the airplane in the air between them. The angle between the first ground station and the plane is 15 degrees, and the angle between the second station and the airplane is 35 degrees. The side between the two stations is of length 20 miles. There is a dotted altitude line perpendicular to the ground side connecting the airplane vertex with the ground.

To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side a , and then use right triangle relationships to find the height of the aircraft, h .

Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180°−15°−35°=130°. This angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship.

   sin ( 130° ) 20 = sin ( 35° ) a a sin ( 130° ) = 20 sin ( 35° )                 a = 20 sin ( 35° ) sin ( 130° )                 a 14.98

The distance from one station to the aircraft is about 14.98 miles.

Now that we know a , we can use right triangle relationships to solve for h .

sin ( 15° ) = opposite hypotenuse sin ( 15° ) = h a sin ( 15° ) = h 14.98             h = 14.98 sin ( 15° )            h 3.88

The aircraft is at an altitude of approximately 3.9 miles.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

The diagram shown in [link] represents the height of a blimp flying over a football stadium. Find the height of the blimp if the angle of elevation at the southern end zone, point A, is 70°, the angle of elevation from the northern end zone, point B , is 62°, and the distance between the viewing points of the two end zones is 145 yards.

An oblique triangle formed from three vertices A, B, and C. Verticies A and B are points on the ground, and vertex C is the blimp in the air between them. The distance between A and B is 145 yards. The angle at vertex A is 70 degrees, and the angle at vertex B is 62 degrees.

161.9 yd.

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with trigonometric applications.

Key equations

Law of Sines sin α a = sin β b = sin γ c a sin α = b sin β = c sin γ
Area for oblique triangles Area = 1 2 b c sin α         = 1 2 a c sin β         = 1 2 a b sin γ

Key concepts

  • The Law of Sines can be used to solve oblique triangles, which are non-right triangles.
  • According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side equals the other two ratios of angle measure to opposite side.
  • There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the appropriate equation to find the requested solution. See [link] .
  • The ambiguous case arises when an oblique triangle can have different outcomes.
  • There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no solution. See [link] and [link] .
  • The Law of Sines can be used to solve triangles with given criteria. See [link] .
  • The general area formula for triangles translates to oblique triangles by first finding the appropriate height value. See [link] .
  • There are many trigonometric applications. They can often be solved by first drawing a diagram of the given information and then using the appropriate equation. See [link] .

Questions & Answers

how can are find the domain and range of a relations
austin Reply
A cell phone company offers two plans for minutes. Plan A: $15 per month and $2 for every 300 texts. Plan B: $25 per month and $0.50 for every 100 texts. How many texts would you need to send per month for plan B to save you money?
Diddy Reply
6000
Robert
more than 6000
Robert
can I see the picture
Zairen Reply
How would you find if a radical function is one to one?
Peighton Reply
how to understand calculus?
Jenica Reply
with doing calculus
SLIMANE
Thanks po.
Jenica
Hey I am new to precalculus, and wanted clarification please on what sine is as I am floored by the terms in this app? I don't mean to sound stupid but I have only completed up to college algebra.
rachel Reply
I don't know if you are looking for a deeper answer or not, but the sine of an angle in a right triangle is the length of the opposite side to the angle in question divided by the length of the hypotenuse of said triangle.
Marco
can you give me sir tips to quickly understand precalculus. Im new too in that topic. Thanks
Jenica
if you remember sine, cosine, and tangent from geometry, all the relationships are the same but they use x y and r instead (x is adjacent, y is opposite, and r is hypotenuse).
Natalie
it is better to use unit circle than triangle .triangle is only used for acute angles but you can begin with. Download any application named"unit circle" you find in it all you need. unit circle is a circle centred at origine (0;0) with radius r= 1.
SLIMANE
What is domain
johnphilip
the standard equation of the ellipse that has vertices (0,-4)&(0,4) and foci (0, -15)&(0,15) it's standard equation is x^2 + y^2/16 =1 tell my why is it only x^2? why is there no a^2?
Reena Reply
what is foci?
Reena Reply
This term is plural for a focus, it is used for conic sections. For more detail or other math questions. I recommend researching on "Khan academy" or watching "The Organic Chemistry Tutor" YouTube channel.
Chris
how to determine the vertex,focus,directrix and axis of symmetry of the parabola by equations
Bryssen Reply
i want to sure my answer of the exercise
meena Reply
what is the diameter of(x-2)²+(y-3)²=25
Den Reply
how to solve the Identity ?
Barcenas Reply
what type of identity
Jeffrey
Confunction Identity
Barcenas
how to solve the sums
meena
hello guys
meena
For each year t, the population of a forest of trees is represented by the function A(t) = 117(1.029)t. In a neighboring forest, the population of the same type of tree is represented by the function B(t) = 86(1.025)t.
Shakeena Reply
by how many trees did forest "A" have a greater number?
Shakeena
32.243
Kenard
how solve standard form of polar
Rhudy Reply
what is a complex number used for?
Drew Reply
It's just like any other number. The important thing to know is that they exist and can be used in computations like any number.
Steve
I would like to add that they are used in AC signal analysis for one thing
Scott
Good call Scott. Also radar signals I believe.
Steve
They are used in any profession where the phase of a waveform has to be accounted for in the calculations. Imagine two electrical signals in a wire that are out of phase by 90°. At some times they will interfere constructively, others destructively. Complex numbers simplify those equations
Tim
Practice Key Terms 4

Get the best Precalculus course in your pocket!





Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask