To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of
$\mathrm{57\xb0}\text{\hspace{0.17em}}$ between a line of sight to the top of the tree and the ground, as shown in
[link] . Find the height of the tree.
We know that the angle of elevation is
$\text{\hspace{0.17em}}\mathrm{57\xb0}\text{\hspace{0.17em}}$ and the adjacent side is 30 ft long. The opposite side is the unknown height.
The trigonometric function relating the side opposite to an angle and the side adjacent to the angle is the tangent. So we will state our information in terms of the tangent of
$\mathrm{57\xb0},$ letting
$\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ be the unknown height.
How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests against the building making an angle of
$\text{\hspace{0.17em}}\frac{5\pi}{12}\text{\hspace{0.17em}}$ with the ground? Round to the nearest foot.
About 52 ft
Access these online resources for additional instruction and practice with right triangle trigonometry.
We can define trigonometric functions as ratios of the side lengths of a right triangle. See
[link] .
The same side lengths can be used to evaluate the trigonometric functions of either acute angle in a right triangle. See
[link] .
We can evaluate the trigonometric functions of special angles, knowing the side lengths of the triangles in which they occur. See
[link] .
Any two complementary angles could be the two acute angles of a right triangle.
If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of the other and vice versa. See
[link] .
We can use trigonometric functions of an angle to find unknown side lengths.
Select the trigonometric function representing the ratio of the unknown side to the known side. See
[link] .
Right-triangle trigonometry permits the measurement of inaccessible heights and distances.
The unknown height or distance can be found by creating a right triangle in which the unknown height or distance is one of the sides, and another side and angle are known. See
[link] .
Section exercises
Verbal
For the given right triangle, label the adjacent side, opposite side, and hypotenuse for the indicated angle.
When a right triangle with a hypotenuse of 1 is placed in the unit circle, which sides of the triangle correspond to the
x - and
y -coordinates?
The tangent of an angle compares which sides of the right triangle?
The tangent of an angle is the ratio of the opposite side to the adjacent side.
What is the relationship between the two acute angles in a right triangle?
Explain the cofunction identity.
For example, the sine of an angle is equal to the cosine of its complement; the cosine of an angle is equal to the sine of its complement.
Questions & Answers
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
In this morden time nanotechnology used in many field .
1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc
2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc
3- Atomobile -MEMS, Coating on car etc.
and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change .
maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world