<< Chapter < Page Chapter >> Page >

Use a calculator to find e 0.5 . Round to five decimal places.

e 0.5 0.60653

Got questions? Get instant answers now!

Investigating continuous growth

So far we have worked with rational bases for exponential functions. For most real-world phenomena, however, e is used as the base for exponential functions. Exponential models that use e as the base are called continuous growth or decay models . We see these models in finance, computer science, and most of the sciences, such as physics, toxicology, and fluid dynamics.

The continuous growth/decay formula

For all real numbers t , and all positive numbers a and r , continuous growth or decay is represented by the formula

A ( t ) = a e r t


  • a is the initial value,
  • r is the continuous growth rate per unit time,
  • and t is the elapsed time.

If r > 0 , then the formula represents continuous growth. If r < 0 , then the formula represents continuous decay.

For business applications, the continuous growth formula is called the continuous compounding formula and takes the form

A ( t ) = P e r t


  • P is the principal or the initial invested,
  • r is the growth or interest rate per unit time,
  • and t is the period or term of the investment.

Given the initial value, rate of growth or decay, and time t , solve a continuous growth or decay function.

  1. Use the information in the problem to determine a , the initial value of the function.
  2. Use the information in the problem to determine the growth rate r .
    1. If the problem refers to continuous growth, then r > 0.
    2. If the problem refers to continuous decay, then r < 0.
  3. Use the information in the problem to determine the time t .
  4. Substitute the given information into the continuous growth formula and solve for A ( t ) .

Calculating continuous growth

A person invested $1,000 in an account earning a nominal 10% per year compounded continuously. How much was in the account at the end of one year?

Since the account is growing in value, this is a continuous compounding problem with growth rate r = 0.10. The initial investment was $1,000, so P = 1000. We use the continuous compounding formula to find the value after t = 1 year:

A ( t ) = P e r t Use the continuous compounding formula . = 1000 ( e ) 0.1 Substitute known values for  P ,   r ,  and  t . 1105.17 Use a calculator to approximate .

The account is worth $1,105.17 after one year.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

A person invests $100,000 at a nominal 12% interest per year compounded continuously. What will be the value of the investment in 30 years?


Got questions? Get instant answers now!

Calculating continuous decay

Radon-222 decays at a continuous rate of 17.3% per day. How much will 100 mg of Radon-222 decay to in 3 days?

Since the substance is decaying, the rate, 17.3 % , is negative. So, r   =   0.173. The initial amount of radon-222 was 100 mg, so a = 100. We use the continuous decay formula to find the value after t = 3 days:

A ( t ) = a e r t Use the continuous growth formula . = 100 e 0.173 ( 3 ) Substitute known values for  a ,   r ,  and  t . 59.5115 Use a calculator to approximate .

So 59.5115 mg of radon-222 will remain.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using the data in [link] , how much radon-222 will remain after one year?

3.77E-26 (This is calculator notation for the number written as 3.77 × 10 26 in scientific notation. While the output of an exponential function is never zero, this number is so close to zero that for all practical purposes we can accept zero as the answer.)

Got questions? Get instant answers now!

Questions & Answers

For each year t, the population of a forest of trees is represented by the function A(t) = 117(1.029)t. In a neighboring forest, the population of the same type of tree is represented by the function B(t) = 86(1.025)t.
Shakeena Reply
by how many trees did forest "A" have a greater number?
how solve standard form of polar
Rhudy Reply
what is a complex number used for?
Drew Reply
It's just like any other number. The important thing to know is that they exist and can be used in computations like any number.
I would like to add that they are used in AC signal analysis for one thing
Good call Scott. Also radar signals I believe.
Is there any rule we can use to get the nth term ?
Anwar Reply
how do you get the (1.4427)^t in the carp problem?
Gabrielle Reply
A hedge is contrusted to be in the shape of hyperbola near a fountain at the center of yard.the hedge will follow the asymptotes y=x and y=-x and closest distance near the distance to the centre fountain at 5 yards find the eqution of the hyperbola
ayesha Reply
A doctor prescribes 125 milligrams of a therapeutic drug that decays by about 30% each hour. To the nearest hour, what is the half-life of the drug?
Sandra Reply
Find the domain of the function in interval or inequality notation f(x)=4-9x+3x^2
prince Reply
Jessica Reply
Outside temperatures over the course of a day can be modeled as a sinusoidal function. Suppose the high temperature of ?105°F??105°F? occurs at 5PM and the average temperature for the day is ?85°F.??85°F.? Find the temperature, to the nearest degree, at 9AM.
Karlee Reply
if you have the amplitude and the period and the phase shift ho would you know where to start and where to end?
Jean Reply
rotation by 80 of (x^2/9)-(y^2/16)=1
Garrett Reply
thanks the domain is good but a i would like to get some other examples of how to find the range of a function
bashiir Reply
what is the standard form if the focus is at (0,2) ?
Lorejean Reply
Roy Reply
Practice Key Terms 4

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?