<< Chapter < Page Chapter >> Page >

Given a logarithmic function with the form f ( x ) = a log b ( x ) , a > 0 , graph the translation.

  1. Identify the vertical stretch or compressions:
    • If | a | > 1 , the graph of f ( x ) = log b ( x ) is stretched by a factor of a units.
    • If | a | < 1 , the graph of f ( x ) = log b ( x ) is compressed by a factor of a units.
  2. Draw the vertical asymptote x = 0.
  3. Identify three key points from the parent function. Find new coordinates for the shifted functions by multiplying the y coordinates by a .
  4. Label the three points.
  5. The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Graphing a stretch or compression of the parent function y = log b ( x )

Sketch a graph of f ( x ) = 2 log 4 ( x ) alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

Since the function is f ( x ) = 2 log 4 ( x ) , we will notice a = 2.

This means we will stretch the function f ( x ) = log 4 ( x ) by a factor of 2.

The vertical asymptote is x = 0.

Consider the three key points from the parent function, ( 1 4 , −1 ) , ( 1 , 0 ), and ( 4 , 1 ) .

The new coordinates are found by multiplying the y coordinates by 2.

Label the points ( 1 4 , −2 ) , ( 1 , 0 ) , and ( 4 , 2 ) .

The domain is ( 0, ) , the range is ( , ), and the vertical asymptote is x = 0. See [link] .

Graph of two functions. The parent function is y=log_4(x), with an asymptote at x=0 and labeled points at (1, 0), and (4, 1).The translation function f(x)=2log_4(x) has an asymptote at x=0 and labeled points at (1, 0) and (2, 1).

The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch a graph of f ( x ) = 1 2 log 4 ( x ) alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

Graph of two functions. The parent function is y=log_4(x), with an asymptote at x=0 and labeled points at (1, 0), and (4, 1).The translation function f(x)=(1/2)log_4(x) has an asymptote at x=0 and labeled points at (1, 0) and (16, 1).

The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Got questions? Get instant answers now!

Combining a shift and a stretch

Sketch a graph of f ( x ) = 5 log ( x + 2 ) . State the domain, range, and asymptote.

Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then stretch the function vertically by a factor of 5, as in [link] . The vertical asymptote will be shifted to x = −2. The x -intercept will be ( −1, 0 ) . The domain will be ( −2 , ) . Two points will help give the shape of the graph: ( −1 , 0 ) and ( 8 , 5 ). We chose x = 8 as the x -coordinate of one point to graph because when x = 8, x + 2 = 10, the base of the common logarithm.

Graph of three functions. The parent function is y=log(x), with an asymptote at x=0. The first translation function y=5log(x+2) has an asymptote at x=-2. The second translation function y=log(x+2) has an asymptote at x=-2.

The domain is ( 2 , ) , the range is ( , ) , and the vertical asymptote is x = 2.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch a graph of the function f ( x ) = 3 log ( x 2 ) + 1. State the domain, range, and asymptote.

Graph of f(x)=3log(x-2)+1 with an asymptote at x=2.

The domain is ( 2 , ) , the range is ( , ) , and the vertical asymptote is x = 2.

Got questions? Get instant answers now!

Graphing reflections of f ( x ) = log b ( x )

When the parent function f ( x ) = log b ( x ) is multiplied by −1 , the result is a reflection about the x -axis. When the input is multiplied by −1 , the result is a reflection about the y -axis. To visualize reflections, we restrict b > 1, and observe the general graph of the parent function f ( x ) = log b ( x ) alongside the reflection about the x -axis, g ( x ) = −log b ( x ) and the reflection about the y -axis, h ( x ) = log b ( x ) .

Graph of two functions. The parent function is f(x)=log_b(x), with an asymptote at x=0  and g(x)=-log_b(x) when b>1 is the translation function with an asymptote at x=0. The graph note the intersection of the two lines at (1, 0). This shows the translation of a reflection about the x-axis.

Reflections of the parent function y = log b ( x )

The function f ( x ) = −log b ( x )

  • reflects the parent function y = log b ( x ) about the x -axis.
  • has domain, ( 0 , ) , range, ( , ) , and vertical asymptote, x = 0 , which are unchanged from the parent function.


The function f ( x ) = log b ( x )

  • reflects the parent function y = log b ( x ) about the y -axis.
  • has domain ( , 0 ) .
  • has range, ( , ) , and vertical asymptote, x = 0 , which are unchanged from the parent function.

Questions & Answers

why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
madras university algebra questions papers first year B. SC. maths
Kanniyappan Reply
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
Michael Reply
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
rajan Reply
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
Ching Reply
give me some important question in tregnamentry
Anshuman
what is linear equation with one unknown 2x+5=3
Joan Reply
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
Adityasuman x= - 1
Aditya
y=x+1
gary
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
Shadow Reply
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Please see ***imgur.com/a/lpTpDZk for solutions
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Marjun Reply
factor or use quadratic formula
Wilson
what is algebra
Ige Reply
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
Martin Reply
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
Yanah Reply
hi
John
hi
Grace
what sup friend
John
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
Grace

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask