<< Chapter < Page Chapter >> Page >

Given a logarithmic function with the form f ( x ) = a log b ( x ) , a > 0 , graph the translation.

  1. Identify the vertical stretch or compressions:
    • If | a | > 1 , the graph of f ( x ) = log b ( x ) is stretched by a factor of a units.
    • If | a | < 1 , the graph of f ( x ) = log b ( x ) is compressed by a factor of a units.
  2. Draw the vertical asymptote x = 0.
  3. Identify three key points from the parent function. Find new coordinates for the shifted functions by multiplying the y coordinates by a .
  4. Label the three points.
  5. The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Graphing a stretch or compression of the parent function y = log b ( x )

Sketch a graph of f ( x ) = 2 log 4 ( x ) alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

Since the function is f ( x ) = 2 log 4 ( x ) , we will notice a = 2.

This means we will stretch the function f ( x ) = log 4 ( x ) by a factor of 2.

The vertical asymptote is x = 0.

Consider the three key points from the parent function, ( 1 4 , −1 ) , ( 1 , 0 ), and ( 4 , 1 ) .

The new coordinates are found by multiplying the y coordinates by 2.

Label the points ( 1 4 , −2 ) , ( 1 , 0 ) , and ( 4 , 2 ) .

The domain is ( 0, ) , the range is ( , ), and the vertical asymptote is x = 0. See [link] .

Graph of two functions. The parent function is y=log_4(x), with an asymptote at x=0 and labeled points at (1, 0), and (4, 1).The translation function f(x)=2log_4(x) has an asymptote at x=0 and labeled points at (1, 0) and (2, 1).

The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch a graph of f ( x ) = 1 2 log 4 ( x ) alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

Graph of two functions. The parent function is y=log_4(x), with an asymptote at x=0 and labeled points at (1, 0), and (4, 1).The translation function f(x)=(1/2)log_4(x) has an asymptote at x=0 and labeled points at (1, 0) and (16, 1).

The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Got questions? Get instant answers now!

Combining a shift and a stretch

Sketch a graph of f ( x ) = 5 log ( x + 2 ) . State the domain, range, and asymptote.

Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then stretch the function vertically by a factor of 5, as in [link] . The vertical asymptote will be shifted to x = −2. The x -intercept will be ( −1, 0 ) . The domain will be ( −2 , ) . Two points will help give the shape of the graph: ( −1 , 0 ) and ( 8 , 5 ). We chose x = 8 as the x -coordinate of one point to graph because when x = 8, x + 2 = 10, the base of the common logarithm.

Graph of three functions. The parent function is y=log(x), with an asymptote at x=0. The first translation function y=5log(x+2) has an asymptote at x=-2. The second translation function y=log(x+2) has an asymptote at x=-2.

The domain is ( 2 , ) , the range is ( , ) , and the vertical asymptote is x = 2.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch a graph of the function f ( x ) = 3 log ( x 2 ) + 1. State the domain, range, and asymptote.

Graph of f(x)=3log(x-2)+1 with an asymptote at x=2.

The domain is ( 2 , ) , the range is ( , ) , and the vertical asymptote is x = 2.

Got questions? Get instant answers now!

Graphing reflections of f ( x ) = log b ( x )

When the parent function f ( x ) = log b ( x ) is multiplied by −1 , the result is a reflection about the x -axis. When the input is multiplied by −1 , the result is a reflection about the y -axis. To visualize reflections, we restrict b > 1, and observe the general graph of the parent function f ( x ) = log b ( x ) alongside the reflection about the x -axis, g ( x ) = −log b ( x ) and the reflection about the y -axis, h ( x ) = log b ( x ) .

Graph of two functions. The parent function is f(x)=log_b(x), with an asymptote at x=0  and g(x)=-log_b(x) when b>1 is the translation function with an asymptote at x=0. The graph note the intersection of the two lines at (1, 0). This shows the translation of a reflection about the x-axis.

Reflections of the parent function y = log b ( x )

The function f ( x ) = −log b ( x )

  • reflects the parent function y = log b ( x ) about the x -axis.
  • has domain, ( 0 , ) , range, ( , ) , and vertical asymptote, x = 0 , which are unchanged from the parent function.


The function f ( x ) = log b ( x )

  • reflects the parent function y = log b ( x ) about the y -axis.
  • has domain ( , 0 ) .
  • has range, ( , ) , and vertical asymptote, x = 0 , which are unchanged from the parent function.

Questions & Answers

An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply

Get the best College algebra course in your pocket!





Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask