# 6.4 Graphs of logarithmic functions  (Page 5/8)

 Page 5 / 8

Given a logarithmic function with the form $\text{\hspace{0.17em}}f\left(x\right)=a{\mathrm{log}}_{b}\left(x\right),$ $a>0,$ graph the translation.

1. Identify the vertical stretch or compressions:
• If $\text{\hspace{0.17em}}|a|>1,$ the graph of $\text{\hspace{0.17em}}f\left(x\right)={\mathrm{log}}_{b}\left(x\right)\text{\hspace{0.17em}}$ is stretched by a factor of $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ units.
• If $\text{\hspace{0.17em}}|a|<1,$ the graph of $\text{\hspace{0.17em}}f\left(x\right)={\mathrm{log}}_{b}\left(x\right)\text{\hspace{0.17em}}$ is compressed by a factor of $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ units.
2. Draw the vertical asymptote $\text{\hspace{0.17em}}x=0.$
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by multiplying the $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ coordinates by $\text{\hspace{0.17em}}a.$
4. Label the three points.
5. The domain is $\text{\hspace{0.17em}}\left(0,\infty \right),$ the range is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ and the vertical asymptote is $\text{\hspace{0.17em}}x=0.$

## Graphing a stretch or compression of the parent function y = log b ( x )

Sketch a graph of $\text{\hspace{0.17em}}f\left(x\right)=2{\mathrm{log}}_{4}\left(x\right)\text{\hspace{0.17em}}$ alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

Since the function is $\text{\hspace{0.17em}}f\left(x\right)=2{\mathrm{log}}_{4}\left(x\right),$ we will notice $\text{\hspace{0.17em}}a=2.$

This means we will stretch the function $\text{\hspace{0.17em}}f\left(x\right)={\mathrm{log}}_{4}\left(x\right)\text{\hspace{0.17em}}$ by a factor of 2.

The vertical asymptote is $\text{\hspace{0.17em}}x=0.$

Consider the three key points from the parent function, $\text{\hspace{0.17em}}\left(\frac{1}{4},-1\right),$ $\left(1,0\right),\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,1\right).$

The new coordinates are found by multiplying the $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ coordinates by 2.

Label the points $\text{\hspace{0.17em}}\left(\frac{1}{4},-2\right),$ $\left(1,0\right)\text{\hspace{0.17em}},$ and $\text{\hspace{0.17em}}\left(4,\text{2}\right).$

The domain is $\text{\hspace{0.17em}}\left(0,\text{\hspace{0.17em}}\infty \right),$ the range is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),\text{\hspace{0.17em}}$ and the vertical asymptote is $\text{\hspace{0.17em}}x=0.\text{\hspace{0.17em}}$ See [link] .

The domain is $\text{\hspace{0.17em}}\left(0,\infty \right),$ the range is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ and the vertical asymptote is $\text{\hspace{0.17em}}x=0.$

Sketch a graph of $\text{\hspace{0.17em}}f\left(x\right)=\frac{1}{2}\text{\hspace{0.17em}}{\mathrm{log}}_{4}\left(x\right)\text{\hspace{0.17em}}$ alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

The domain is $\text{\hspace{0.17em}}\left(0,\infty \right),$ the range is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ and the vertical asymptote is $\text{\hspace{0.17em}}x=0.$

## Combining a shift and a stretch

Sketch a graph of $\text{\hspace{0.17em}}f\left(x\right)=5\mathrm{log}\left(x+2\right).\text{\hspace{0.17em}}$ State the domain, range, and asymptote.

Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then stretch the function vertically by a factor of 5, as in [link] . The vertical asymptote will be shifted to $\text{\hspace{0.17em}}x=-2.\text{\hspace{0.17em}}$ The x -intercept will be $\text{\hspace{0.17em}}\left(-1,0\right).\text{\hspace{0.17em}}$ The domain will be $\text{\hspace{0.17em}}\left(-2,\infty \right).\text{\hspace{0.17em}}$ Two points will help give the shape of the graph: $\text{\hspace{0.17em}}\left(-1,0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(8,5\right).\text{\hspace{0.17em}}$ We chose $\text{\hspace{0.17em}}x=8\text{\hspace{0.17em}}$ as the x -coordinate of one point to graph because when $\text{\hspace{0.17em}}x=8,\text{\hspace{0.17em}}$ $\text{\hspace{0.17em}}x+2=10,\text{\hspace{0.17em}}$ the base of the common logarithm.

The domain is $\text{\hspace{0.17em}}\left(-2,\infty \right),$ the range is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ and the vertical asymptote is $\text{\hspace{0.17em}}x=-2.$

Sketch a graph of the function $\text{\hspace{0.17em}}f\left(x\right)=3\mathrm{log}\left(x-2\right)+1.\text{\hspace{0.17em}}$ State the domain, range, and asymptote.

The domain is $\text{\hspace{0.17em}}\left(2,\infty \right),$ the range is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ and the vertical asymptote is $\text{\hspace{0.17em}}x=2.$

## Graphing reflections of f ( x ) = log b ( x )

When the parent function $\text{\hspace{0.17em}}f\left(x\right)={\mathrm{log}}_{b}\left(x\right)\text{\hspace{0.17em}}$ is multiplied by $\text{\hspace{0.17em}}-1,$ the result is a reflection about the x -axis. When the input is multiplied by $\text{\hspace{0.17em}}-1,$ the result is a reflection about the y -axis. To visualize reflections, we restrict $\text{\hspace{0.17em}}b>1,\text{\hspace{0.17em}}$ and observe the general graph of the parent function $\text{\hspace{0.17em}}f\left(x\right)={\mathrm{log}}_{b}\left(x\right)\text{\hspace{0.17em}}$ alongside the reflection about the x -axis, $\text{\hspace{0.17em}}g\left(x\right)={\mathrm{-log}}_{b}\left(x\right)\text{\hspace{0.17em}}$ and the reflection about the y -axis, $\text{\hspace{0.17em}}h\left(x\right)={\mathrm{log}}_{b}\left(-x\right).$

## Reflections of the parent function y = log b ( x )

The function $\text{\hspace{0.17em}}f\left(x\right)={\mathrm{-log}}_{b}\left(x\right)$

• reflects the parent function $\text{\hspace{0.17em}}y={\mathrm{log}}_{b}\left(x\right)\text{\hspace{0.17em}}$ about the x -axis.
• has domain, $\text{\hspace{0.17em}}\left(0,\infty \right),$ range, $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ and vertical asymptote, $\text{\hspace{0.17em}}x=0,$ which are unchanged from the parent function.

The function $\text{\hspace{0.17em}}f\left(x\right)={\mathrm{log}}_{b}\left(-x\right)$

• reflects the parent function $\text{\hspace{0.17em}}y={\mathrm{log}}_{b}\left(x\right)\text{\hspace{0.17em}}$ about the y -axis.
• has domain $\text{\hspace{0.17em}}\left(-\infty ,0\right).$
• has range, $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ and vertical asymptote, $\text{\hspace{0.17em}}x=0,$ which are unchanged from the parent function.

why {2kπ} union {kπ}={kπ}?
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
give me treganamentry question
Solve 2cos x + 3sin x = 0.5
madras university algebra questions papers first year B. SC. maths
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
give me some important question in tregnamentry
Anshuman
what is linear equation with one unknown 2x+5=3
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
y=x+1
gary
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Wilson
what is algebra
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
hi
John
hi
Grace
what sup friend
John
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
Grace