# 6.2 Graphs of the other trigonometric functions  (Page 2/9)

 Page 2 / 9

## Graphing variations of y = tan x

As with the sine and cosine functions, the tangent    function can be described by a general equation.

$y=A\mathrm{tan}\left(Bx\right)$

We can identify horizontal and vertical stretches and compressions using values of $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}B.\text{\hspace{0.17em}}$ The horizontal stretch can typically be determined from the period of the graph. With tangent graphs, it is often necessary to determine a vertical stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be interpreted as it is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing factor when referring to the constant $\text{\hspace{0.17em}}A.$

## Features of the graph of y = A Tan( Bx )

• The stretching factor is $\text{\hspace{0.17em}}|A|.$
• The period is $\text{\hspace{0.17em}}P=\frac{\pi }{|B|}.$
• The domain is all real numbers $\text{\hspace{0.17em}}x,$ where $\text{\hspace{0.17em}}x\ne \frac{\pi }{2|B|}+\frac{\pi }{|B|}k\text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is an integer.
• The range is $\text{\hspace{0.17em}}\left(\mathrm{-\infty },\infty \right).$
• The asymptotes occur at $\text{\hspace{0.17em}}x=\frac{\pi }{2|B|}+\frac{\pi }{|B|}k,\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is an integer.
• $y=A\mathrm{tan}\left(Bx\right)\text{\hspace{0.17em}}$ is an odd function.

## Graphing one period of a stretched or compressed tangent function

We can use what we know about the properties of the tangent function to quickly sketch a graph of any stretched and/or compressed tangent function of the form $\text{\hspace{0.17em}}f\left(x\right)=A\mathrm{tan}\left(Bx\right).\text{\hspace{0.17em}}$ We focus on a single period    of the function including the origin, because the periodic property enables us to extend the graph to the rest of the function’s domain if we wish. Our limited domain is then the interval $\text{\hspace{0.17em}}\left(-\frac{P}{2},\frac{P}{2}\right)\text{\hspace{0.17em}}$ and the graph has vertical asymptotes at $\text{\hspace{0.17em}}±\frac{P}{2}\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}P=\frac{\pi }{B}.\text{\hspace{0.17em}}$ On $\text{\hspace{0.17em}}\left(-\frac{\pi }{2},\frac{\pi }{2}\right),\text{\hspace{0.17em}}$ the graph will come up from the left asymptote at $\text{\hspace{0.17em}}x=-\frac{\pi }{2},\text{\hspace{0.17em}}$ cross through the origin, and continue to increase as it approaches the right asymptote at $\text{\hspace{0.17em}}x=\frac{\pi }{2}.\text{\hspace{0.17em}}$ To make the function approach the asymptotes at the correct rate, we also need to set the vertical scale by actually evaluating the function for at least one point that the graph will pass through. For example, we can use

$f\left(\frac{P}{4}\right)=A\mathrm{tan}\left(B\frac{P}{4}\right)=A\mathrm{tan}\left(B\frac{\pi }{4B}\right)=A$

because $\text{\hspace{0.17em}}\mathrm{tan}\left(\frac{\pi }{4}\right)=1.$

Given the function $\text{\hspace{0.17em}}f\left(x\right)=A\mathrm{tan}\left(Bx\right),\text{\hspace{0.17em}}$ graph one period.

1. Identify the stretching factor, $\text{\hspace{0.17em}}|A|.$
2. Identify $\text{\hspace{0.17em}}B\text{\hspace{0.17em}}$ and determine the period, $\text{\hspace{0.17em}}P=\frac{\pi }{|B|}.$
3. Draw vertical asymptotes at $\text{\hspace{0.17em}}x=-\frac{P}{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=\frac{P}{2}.$
4. For $\text{\hspace{0.17em}}A>0,\text{\hspace{0.17em}}$ the graph approaches the left asymptote at negative output values and the right asymptote at positive output values (reverse for $\text{\hspace{0.17em}}A<0$ ).
5. Plot reference points at $\text{\hspace{0.17em}}\left(\frac{P}{4},A\right),\text{\hspace{0.17em}}$ $\left(0,0\right),\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-\frac{P}{4},-A\right),\text{\hspace{0.17em}}$ and draw the graph through these points.

## Sketching a compressed tangent

Sketch a graph of one period of the function $\text{\hspace{0.17em}}y=0.5\mathrm{tan}\left(\frac{\pi }{2}x\right).$

First, we identify $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}B.$

Because $\text{\hspace{0.17em}}A=0.5\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}B=\frac{\pi }{2},\text{\hspace{0.17em}}$ we can find the stretching/compressing factor and period. The period is $\text{\hspace{0.17em}}\frac{\pi }{\frac{\pi }{2}}=2,\text{\hspace{0.17em}}$ so the asymptotes are at $\text{\hspace{0.17em}}x=±1.\text{\hspace{0.17em}}$ At a quarter period from the origin, we have

$\begin{array}{l}f\left(0.5\right)=0.5\mathrm{tan}\left(\frac{0.5\pi }{2}\right)\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=0.5\mathrm{tan}\left(\frac{\pi }{4}\right)\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=0.5\hfill \end{array}$

This means the curve must pass through the points $\text{\hspace{0.17em}}\left(0.5,0.5\right),$ $\left(0,0\right),$ and $\text{\hspace{0.17em}}\left(-0.5,-0.5\right).\text{\hspace{0.17em}}$ The only inflection point is at the origin. [link] shows the graph of one period of the function.

Sketch a graph of $\text{\hspace{0.17em}}f\left(x\right)=3\mathrm{tan}\left(\frac{\pi }{6}x\right).$

## Graphing one period of a shifted tangent function

Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or horizontal (or phase) shift. In this case, we add $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}D\text{\hspace{0.17em}}$ to the general form of the tangent function.

how can are find the domain and range of a relations
A cell phone company offers two plans for minutes. Plan A: $15 per month and$2 for every 300 texts. Plan B: $25 per month and$0.50 for every 100 texts. How many texts would you need to send per month for plan B to save you money?
6000
Robert
more than 6000
Robert
can I see the picture
How would you find if a radical function is one to one?
how to understand calculus?
with doing calculus
SLIMANE
Thanks po.
Jenica
Hey I am new to precalculus, and wanted clarification please on what sine is as I am floored by the terms in this app? I don't mean to sound stupid but I have only completed up to college algebra.
I don't know if you are looking for a deeper answer or not, but the sine of an angle in a right triangle is the length of the opposite side to the angle in question divided by the length of the hypotenuse of said triangle.
Marco
can you give me sir tips to quickly understand precalculus. Im new too in that topic. Thanks
Jenica
if you remember sine, cosine, and tangent from geometry, all the relationships are the same but they use x y and r instead (x is adjacent, y is opposite, and r is hypotenuse).
Natalie
it is better to use unit circle than triangle .triangle is only used for acute angles but you can begin with. Download any application named"unit circle" you find in it all you need. unit circle is a circle centred at origine (0;0) with radius r= 1.
SLIMANE
What is domain
johnphilip
the standard equation of the ellipse that has vertices (0,-4)&(0,4) and foci (0, -15)&(0,15) it's standard equation is x^2 + y^2/16 =1 tell my why is it only x^2? why is there no a^2?
what is foci?
This term is plural for a focus, it is used for conic sections. For more detail or other math questions. I recommend researching on "Khan academy" or watching "The Organic Chemistry Tutor" YouTube channel.
Chris
how to determine the vertex,focus,directrix and axis of symmetry of the parabola by equations
i want to sure my answer of the exercise
what is the diameter of(x-2)²+(y-3)²=25
how to solve the Identity ?
what type of identity
Jeffrey
Confunction Identity
Barcenas
how to solve the sums
meena
hello guys
meena
For each year t, the population of a forest of trees is represented by the function A(t) = 117(1.029)t. In a neighboring forest, the population of the same type of tree is represented by the function B(t) = 86(1.025)t.
by how many trees did forest "A" have a greater number?
Shakeena
32.243
Kenard
how solve standard form of polar
what is a complex number used for?
It's just like any other number. The important thing to know is that they exist and can be used in computations like any number.
Steve
I would like to add that they are used in AC signal analysis for one thing
Scott
Good call Scott. Also radar signals I believe.
Steve
They are used in any profession where the phase of a waveform has to be accounted for in the calculations. Imagine two electrical signals in a wire that are out of phase by 90°. At some times they will interfere constructively, others destructively. Complex numbers simplify those equations
Tim