# 4.3 Fitting linear models to data  (Page 6/14)

 Page 6 / 14
$x$ $y$
4 44.8
5 43.1
6 38.8
7 39
8 38
9 32.7
10 30.1
11 29.3
12 27
13 25.8
 $x$ 21 25 30 31 40 50 $y$ 17 11 2 –1 –18 –40

$y=-\text{1}.\text{981}x+\text{6}0.\text{197;}$ $r=-0.\text{998}$

$x$ $y$
100 2000
80 1798
60 1589
55 1580
40 1390
20 1202
 $x$ 900 988 1000 1010 1200 1205 $y$ 70 80 82 84 105 108

$y=0.\text{121}x-38.841,r=0.998$

## Extensions

Graph $\text{\hspace{0.17em}}f\left(x\right)=0.5x+10.\text{\hspace{0.17em}}$ Pick a set of five ordered pairs using inputs $\text{\hspace{0.17em}}x=-2,\text{1},\text{5},\text{6},\text{9}\text{\hspace{0.17em}}$ and use linear regression to verify that the function is a good fit for the data.

Graph $\text{\hspace{0.17em}}f\left(x\right)=-2x-10.\text{\hspace{0.17em}}$ Pick a set of five ordered pairs using inputs $\text{\hspace{0.17em}}x=-2,\text{1},\text{5},\text{6},\text{9}\text{\hspace{0.17em}}$ and use linear regression to verify the function.

$\left(-2,-6\right),\left(1,\text{−12}\right),\left(5,-20\right),\left(6,\text{−22}\right),\left(9,\text{−28}\right);\text{\hspace{0.17em}}$ Yes, the function is a good fit.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The following ordered pairs shows dollars and the number of units sold in hundreds and the profit in thousands of over the ten-year span, (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{1},600\right),\left(\text{48},\text{1},\text{55}0\right),\left(50,\text{1},505\right),\left(\text{52},\text{1},\text{54}0\right),\left(\text{54},\text{1},\text{495}\right).$

Use linear regression to determine a function $\text{\hspace{0.17em}}P\text{\hspace{0.17em}}$ where the profit in thousands of dollars depends on the number of units sold in hundreds.

Find to the nearest tenth and interpret the x -intercept.

$\left(\text{189}.8,0\right)\text{\hspace{0.17em}}$ If 18,980 units are sold, the company will have a profit of zero dollars.

Find to the nearest tenth and interpret the y -intercept.

## Real-world applications

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The following ordered pairs shows the population and the year over the ten-year span, (population, year) for specific recorded years:

$\left(\text{25}00,2000\right),\left(\text{265}0,2001\right),\left(3000,2003\right),\left(\text{35}00,2006\right),\left(\text{42}00,2010\right)$

Use linear regression to determine a function $\text{\hspace{0.17em}}y,$ where the year depends on the population. Round to three decimal places of accuracy.

$y=0.00587x+\text{1985}.4\text{1}$

Predict when the population will hit 8,000.

For the following exercises, consider this scenario: The profit of a company increased steadily over a ten-year span. The following ordered pairs show the number of units sold in hundreds and the profit in thousands of over the ten year span, (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{25}0\right),\left(\text{48},\text{3}05\right),\left(50,\text{35}0\right),\left(\text{52},\text{39}0\right),\left(\text{54},\text{41}0\right).$

Use linear regression to determine a function y , where the profit in thousands of dollars depends on the number of units sold in hundreds.

$y=\text{2}0.\text{25}x-\text{671}.\text{5}$

Predict when the profit will exceed one million dollars.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The following ordered pairs show dollars and the number of units sold in hundreds and the profit in thousands of over the ten-year span (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{25}0\right),\left(\text{48},\text{225}\right),\left(50,\text{2}05\right),\left(\text{52},\text{18}0\right),\left(\text{54},\text{165}\right).$

Use linear regression to determine a function y , where the profit in thousands of dollars depends on the number of units sold in hundreds.

$y=-\text{1}0.\text{75}x+\text{742}.\text{5}0$

Predict when the profit will dip below the $25,000 threshold. ## Chapter review exercises ## Linear Functions Determine whether the algebraic equation is linear. $\text{\hspace{0.17em}}2x+3y=7$ Yes #### Questions & Answers An investment account was opened with an initial deposit of$9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
12, 17, 22.... 25th term
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×