<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use the Law of Cosines to solve oblique triangles.
  • Solve applied problems using the Law of Cosines.
  • Use Heron’s formula to find the area of a triangle.

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles as shown in [link] . How far from port is the boat?

A triangle whose vertices are the boat, the port, and the turning point of the boat. The side between the port and the turning point is 10 mi, and the side between the turning point and the boat is 8 miles. The side between the port and the turning point is extended in a straight dotted line. The angle between the dotted line and the 8 mile side is 20 degrees.

Unfortunately, while the Law of Sines enables us to address many non-right triangle cases, it does not help us with triangles where the known angle is between two known sides, a SAS (side-angle-side) triangle , or when all three sides are known, but no angles are known, a SSS (side-side-side) triangle . In this section, we will investigate another tool for solving oblique triangles described by these last two cases.

Using the law of cosines to solve oblique triangles

The tool we need to solve the problem of the boat’s distance from the port is the Law of Cosines , which defines the relationship among angle measurements and side lengths in oblique triangles. Three formulas make up the Law of Cosines. At first glance, the formulas may appear complicated because they include many variables. However, once the pattern is understood, the Law of Cosines is easier to work with than most formulas at this mathematical level.

Understanding how the Law of Cosines is derived will be helpful in using the formulas. The derivation begins with the Generalized Pythagorean Theorem    , which is an extension of the Pythagorean Theorem to non-right triangles. Here is how it works: An arbitrary non-right triangle A B C is placed in the coordinate plane with vertex A at the origin, side c drawn along the x -axis, and vertex C located at some point ( x , y ) in the plane, as illustrated in [link] . Generally, triangles exist anywhere in the plane, but for this explanation we will place the triangle as noted.

A triangle A B C plotted in quadrant 1 of the x,y plane. Angle A is theta degrees with opposite side a, angles B and C, with opposite sides b and c respectively, are unknown. Vertex A is located at the origin (0,0), vertex B is located at some point (x-c, 0) along the x-axis, and point C is located at some point in quadrant 1 at the point (b times the cos of theta, b times the sin of theta).

We can drop a perpendicular from C to the x- axis (this is the altitude or height). Recalling the basic trigonometric identities , we know that

cos θ = x (adjacent) b (hypotenuse)  and  sin θ = y (opposite) b (hypotenuse)

In terms of θ ,   x = b cos θ and y = b sin θ .   The ( x , y ) point located at C has coordinates ( b cos θ , b sin θ ) . Using the side ( x c ) as one leg of a right triangle and y as the second leg, we can find the length of hypotenuse a using the Pythagorean Theorem. Thus,

  a 2 = ( x c ) 2 + y 2         = ( b cos θ c ) 2 + ( b sin θ ) 2 Substitute  ( b cos θ )  for x and  ( b sin θ ) for  y .         = ( b 2 cos 2 θ 2 b c cos θ + c 2 ) + b 2 sin 2 θ Expand the perfect square .         = b 2 cos 2 θ + b 2 sin 2 θ + c 2 2 b c cos θ Group terms noting that  cos 2 θ + sin 2 θ = 1.         = b 2 ( cos 2 θ + sin 2 θ ) + c 2 2 b c cos θ Factor out  b 2 .   a 2 = b 2 + c 2 2 b c cos θ

The formula derived is one of the three equations of the Law of Cosines. The other equations are found in a similar fashion.

Keep in mind that it is always helpful to sketch the triangle when solving for angles or sides. In a real-world scenario, try to draw a diagram of the situation. As more information emerges, the diagram may have to be altered. Make those alterations to the diagram and, in the end, the problem will be easier to solve.

Law of cosines

The Law of Cosines    states that the square of any side of a triangle is equal to the sum of the squares of the other two sides minus twice the product of the other two sides and the cosine of the included angle. For triangles labeled as in [link] , with angles α , β , and γ , and opposite corresponding sides a , b , and c , respectively, the Law of Cosines is given as three equations.

a 2 = b 2 + c 2 2 b c cos α b 2 = a 2 + c 2 2 a c cos β c 2 = a 2 + b 2 2 a b cos γ
A triangle with standard labels: angles alpha, beta, and gamma with opposite sides a, b, and c respectively.

To solve for a missing side measurement, the corresponding opposite angle measure is needed.

When solving for an angle, the corresponding opposite side measure is needed. We can use another version of the Law of Cosines to solve for an angle.

cos   α = b 2 + c 2 a 2 2 b c cos   β = a 2 + c 2 b 2 2 a c cos   γ = a 2 + b 2 c 2 2 a b

Questions & Answers

for the "hiking" mix, there are 1,000 pieces in the mix, containing 390.8 g of fat, and 165 g of protein. if there is the same amount of almonds as cashews, how many of each item is in the trail mix?
ADNAN Reply
linear speed of an object
Melissa Reply
an object is traveling around a circle with a radius of 13 meters .if in 20 seconds a central angle of 1/7 Radian is swept out what are the linear and angular speed of the object
Melissa
test
Matrix
how to find domain
Mohamed Reply
like this: (2)/(2-x) the aim is to see what will not be compatible with this rational expression. If x= 0 then the fraction is undefined since we cannot divide by zero. Therefore, the domain consist of all real numbers except 2.
Dan
define the term of domain
Moha
if a>0 then the graph is concave
Angel Reply
if a<0 then the graph is concave blank
Angel
what's a domain
Kamogelo Reply
The set of all values you can use as input into a function su h that the output each time will be defined, meaningful and real.
Spiro
how fast can i understand functions without much difficulty
Joe Reply
what is inequalities
Nathaniel
functions can be understood without a lot of difficulty. Observe the following: f(2) 2x - x 2(2)-2= 2 now observe this: (2,f(2)) ( 2, -2) 2(-x)+2 = -2 -4+2=-2
Dan
what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
158.5 This number can be developed by using algebra and logarithms. Begin by moving log(2) to the right hand side of the equation like this: t/100 log(2)= log(3) step 1: divide each side by log(2) t/100=1.58496250072 step 2: multiply each side by 100 to isolate t. t=158.49
Dan
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
ismail
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
how to find x: 12x = 144 notice how 12 is being multiplied by x. Therefore division is needed to isolate x and whatever we do to one side of the equation we must do to the other. That develops this: x= 144/12 divide 144 by 12 to get x. addition: 12+x= 14 subtract 12 by each side. x =2
Dan
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask