<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Evaluate a polynomial using the Remainder Theorem.
  • Use the Factor Theorem to solve a polynomial equation.
  • Use the Rational Zero Theorem to find rational zeros.
  • Find zeros of a polynomial function.
  • Use the Linear Factorization Theorem to find polynomials with given zeros.
  • Use Descartes’ Rule of Signs.
  • Solve real-world applications of polynomial equations

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery wants the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want the length of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. What should the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic equation for the volume of the cake. In this section, we will discuss a variety of tools for writing polynomial functions and solving polynomial equations.

Evaluating a polynomial using the remainder theorem

In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate polynomials using the Remainder Theorem    . If the polynomial is divided by x k , the remainder may be found quickly by evaluating the polynomial function at k , that is, f ( k ) Let’s walk through the proof of the theorem.

Recall that the Division Algorithm    states that, given a polynomial dividend f ( x ) and a non-zero polynomial divisor d ( x ) where the degree of d ( x ) is less than or equal to the degree of f ( x ) , there exist unique polynomials q ( x ) and r ( x ) such that

f ( x ) = d ( x ) q ( x ) + r ( x )

If the divisor, d ( x ) , is x k , this takes the form

f ( x ) = ( x k ) q ( x ) + r

Since the divisor x k is linear, the remainder will be a constant, r . And, if we evaluate this for x = k , we have

f ( k ) = ( k k ) q ( k ) + r         = 0 q ( k ) + r         = r

In other words, f ( k ) is the remainder obtained by dividing f ( x ) by x k .

The remainder theorem

If a polynomial f ( x ) is divided by x k , then the remainder is the value f ( k ) .

Given a polynomial function f , evaluate f ( x ) at x = k using the Remainder Theorem.

  1. Use synthetic division to divide the polynomial by x k .
  2. The remainder is the value f ( k ) .

Using the remainder theorem to evaluate a polynomial

Use the Remainder Theorem to evaluate f ( x ) = 6 x 4 x 3 15 x 2 + 2 x 7 at x = 2.

To find the remainder using the Remainder Theorem, use synthetic division to divide the polynomial by x 2.

2 6 1 15 2 7 12    22 14 32     6 11      7 16 25

The remainder is 25. Therefore, f ( 2 ) = 25.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the Remainder Theorem to evaluate f ( x ) = 2 x 5 3 x 4 9 x 3 + 8 x 2 + 2 at x = 3.

f ( 3 ) = 412

Got questions? Get instant answers now!

Using the factor theorem to solve a polynomial equation

The Factor Theorem is another theorem that helps us analyze polynomial equations. It tells us how the zeros of a polynomial are related to the factors. Recall that the Division Algorithm tells us

f ( x ) = ( x k ) q ( x ) + r .

If k is a zero, then the remainder r is f ( k ) = 0 and f ( x ) = ( x k ) q ( x ) + 0 or f ( x ) = ( x k ) q ( x ) .

Notice, written in this form, x k is a factor of f ( x ) . We can conclude if k is a zero of f ( x ) , then x k is a factor of f ( x ) .

Questions & Answers

what is mutation
Janga Reply
what is a cell
Sifune Reply
how is urine form
Sifune
what is antagonism?
mahase Reply
classification of plants, gymnosperm features.
Linsy Reply
what is the features of gymnosperm
Linsy
how many types of solid did we have
Samuel Reply
what is an ionic bond
Samuel
What is Atoms
Daprince Reply
what is fallopian tube
Merolyn
what is bladder
Merolyn
what's bulbourethral gland
Eduek Reply
urine is formed in the nephron of the renal medulla in the kidney. It starts from filtration, then selective reabsorption and finally secretion
onuoha Reply
State the evolution relation and relevance between endoplasmic reticulum and cytoskeleton as it relates to cell.
Jeremiah
what is heart
Konadu Reply
how is urine formed in human
Konadu
how is urine formed in human
Rahma
what is the diference between a cavity and a canal
Pelagie Reply
what is the causative agent of malaria
Diamond
malaria is caused by an insect called mosquito.
Naomi
Malaria is cause by female anopheles mosquito
Isaac
Malaria is caused by plasmodium Female anopheles mosquitoe is d carrier
Olalekan
a canal is more needed in a root but a cavity is a bad effect
Commander
what are pathogens
Don Reply
In biology, a pathogen (Greek: πάθος pathos "suffering", "passion" and -γενής -genēs "producer of") in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s.[1][2
Zainab
A virus
Commander
Definition of respiration
Muhsin Reply
respiration is the process in which we breath in oxygen and breath out carbon dioxide
Achor
how are lungs work
Commander
where does digestion begins
Achiri Reply
in the mouth
EZEKIEL
what are the functions of follicle stimulating harmones?
Rashima Reply
stimulates the follicle to release the mature ovum into the oviduct
Davonte
what are the functions of Endocrine and pituitary gland
Chinaza
endocrine secrete hormone and regulate body process
Achor
while pituitary gland is an example of endocrine system and it's found in the Brain
Achor
what's biology?
Egbodo Reply
Biology is the study of living organisms, divided into many specialized field that cover their morphology, physiology,anatomy, behaviour,origin and distribution.
Lisah
biology is the study of life.
Alfreda
Biology is the study of how living organisms live and survive in a specific environment
Sifune
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask