<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Recognize characteristics of graphs of polynomial functions.
  • Use factoring to find zeros of polynomial functions.
  • Identify zeros and their multiplicities.
  • Determine end behavior.
  • Understand the relationship between degree and turning points.
  • Graph polynomial functions.
  • Use the Intermediate Value Theorem.

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in [link] .

Year 2006 2007 2008 2009 2010 2011 2012 2013
Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

The revenue can be modeled by the polynomial function

R ( t ) = 0.037 t 4 + 1.414 t 3 19.777 t 2 + 118.696 t 205.332

where R represents the revenue in millions of dollars and t represents the year, with t = 6 corresponding to 2006. Over which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company decreasing? These questions, along with many others, can be answered by examining the graph of the polynomial function. We have already explored the local behavior of quadratics, a special case of polynomials. In this section we will explore the local behavior of polynomials in general.

Recognizing characteristics of graphs of polynomial functions

Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these types of graphs are called smooth curves. Polynomial functions also display graphs that have no breaks. Curves with no breaks are called continuous. [link] shows a graph that represents a polynomial function    and a graph that represents a function that is not a polynomial.

Graph of f(x)=x^3-0.01x.

Recognizing polynomial functions

Which of the graphs in [link] represents a polynomial function?

Two graphs in which one has a polynomial function and the other has a function closely resembling a polynomial but is not.
Two graphs in which one has a polynomial function and the other has a function closely resembling a polynomial but is not.

The graphs of f and h are graphs of polynomial functions. They are smooth and continuous .

The graphs of g and k are graphs of functions that are not polynomials. The graph of function g has a sharp corner. The graph of function k is not continuous.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Do all polynomial functions have as their domain all real numbers?

Yes. Any real number is a valid input for a polynomial function.

Using factoring to find zeros of polynomial functions

Recall that if f is a polynomial function, the values of x for which f ( x ) = 0 are called zeros    of f . If the equation of the polynomial function can be factored, we can set each factor equal to zero and solve for the zeros .

We can use this method to find x - intercepts because at the x - intercepts we find the input values when the output value is zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the relatively simple quadratic formula, the corresponding formulas for cubic and fourth-degree polynomials are not simple enough to remember, and formulas do not exist for general higher-degree polynomials. Consequently, we will limit ourselves to three cases in this section:

  1. The polynomial can be factored using known methods: greatest common factor and trinomial factoring.
  2. The polynomial is given in factored form.
  3. Technology is used to determine the intercepts.

Given a polynomial function f , find the x -intercepts by factoring.

  1. Set f ( x ) = 0.
  2. If the polynomial function is not given in factored form:
    1. Factor out any common monomial factors.
    2. Factor any factorable binomials or trinomials.
  3. Set each factor equal to zero and solve to find the x - intercepts.

Questions & Answers

for the "hiking" mix, there are 1,000 pieces in the mix, containing 390.8 g of fat, and 165 g of protein. if there is the same amount of almonds as cashews, how many of each item is in the trail mix?
ADNAN Reply
linear speed of an object
Melissa Reply
an object is traveling around a circle with a radius of 13 meters .if in 20 seconds a central angle of 1/7 Radian is swept out what are the linear and angular speed of the object
Melissa
test
Matrix
how to find domain
Mohamed Reply
like this: (2)/(2-x) the aim is to see what will not be compatible with this rational expression. If x= 0 then the fraction is undefined since we cannot divide by zero. Therefore, the domain consist of all real numbers except 2.
Dan
define the term of domain
Moha
if a>0 then the graph is concave
Angel Reply
if a<0 then the graph is concave blank
Angel
what's a domain
Kamogelo Reply
The set of all values you can use as input into a function su h that the output each time will be defined, meaningful and real.
Spiro
how fast can i understand functions without much difficulty
Joe Reply
what is inequalities
Nathaniel
functions can be understood without a lot of difficulty. Observe the following: f(2) 2x - x 2(2)-2= 2 now observe this: (2,f(2)) ( 2, -2) 2(-x)+2 = -2 -4+2=-2
Dan
what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
158.5 This number can be developed by using algebra and logarithms. Begin by moving log(2) to the right hand side of the equation like this: t/100 log(2)= log(3) step 1: divide each side by log(2) t/100=1.58496250072 step 2: multiply each side by 100 to isolate t. t=158.49
Dan
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
ismail
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
how to find x: 12x = 144 notice how 12 is being multiplied by x. Therefore division is needed to isolate x and whatever we do to one side of the equation we must do to the other. That develops this: x= 144/12 divide 144 by 12 to get x. addition: 12+x= 14 subtract 12 by each side. x =2
Dan
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask