<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Find the derivative of a function.
  • Find instantaneous rates of change.
  • Find an equation of the tangent line to the graph of a function at a point.
  • Find the instantaneous velocity of a particle.

The average teen in the United States opens a refrigerator door an estimated 25 times per day. Supposedly, this average is up from 10 years ago when the average teenager opened a refrigerator door 20 times per day http://www.csun.edu/science/health/docs/tv&health.html Source provided. .

It is estimated that a television is on in a home 6.75 hours per day, whereas parents spend an estimated 5.5 minutes per day having a meaningful conversation with their children. These averages, too, are not the same as they were 10 years ago, when the television was on an estimated 6 hours per day in the typical household, and parents spent 12 minutes per day in meaningful conversation with their kids.

What do these scenarios have in common? The functions representing them have changed over time. In this section, we will consider methods of computing such changes over time.

Finding the average rate of change of a function

The functions describing the examples above involve a change over time. Change divided by time is one example of a rate. The rates of change in the previous examples are each different. In other words, some changed faster than others. If we were to graph the functions, we could compare the rates by determining the slopes of the graphs.

A tangent line    to a curve is a line that intersects the curve at only a single point but does not cross it there. (The tangent line may intersect the curve at another point away from the point of interest.) If we zoom in on a curve at that point, the curve appears linear, and the slope of the curve at that point is close to the slope of the tangent line at that point.

[link] represents the function f ( x ) = x 3 4 x . We can see the slope at various points along the curve.

  • slope at x = −2 is 8
  • slope at x = −1 is –1
  • slope at x = 2 is 8

Graph of f(x) = x^3 - 4x with tangent lines at x = -2 with a slope of 8, at x = -3 with a slope of -1, and at x=2 with a slope of 8.
Graph showing tangents to curve at –2, –1, and 2.

Let’s imagine a point on the curve of function f at x = a as shown in [link] . The coordinates of the point are ( a , f ( a ) ) . Connect this point with a second point on the curve a little to the right of x = a , with an x -value increased by some small real number h . The coordinates of this second point are ( a + h , f ( a + h ) ) for some positive-value h .

Graph of an increasing function that demonstrates the rate of change of the function by drawing a line between the two points, (a, f(a)) and (a, f(a+h)).
Connecting point a with a point just beyond allows us to measure a slope close to that of a tangent line at x = a .

We can calculate the slope of the line connecting the two points ( a , f ( a ) ) and ( a + h , f ( a + h ) ) , called a secant line    , by applying the slope formula,

slope =  change in  y change in  x

slope =  change in  y change in  x

We use the notation m sec to represent the slope of the secant line connecting two points.

m sec = f ( a + h ) f ( a ) ( a + h ) ( a )         = f ( a + h ) f ( a ) a + h a

The slope m sec equals the average rate of change between two points ( a , f ( a ) ) and ( a + h , f ( a + h ) ) .

m sec = f ( a + h ) f ( a ) h

The average rate of change between two points on a curve

The average rate of change    (AROC) between two points ( a , f ( a ) ) and ( a + h , f ( a + h ) ) on the curve of f is the slope of the line connecting the two points and is given by

AROC = f ( a + h ) f ( a ) h

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask