<< Chapter < Page Chapter >> Page >

Applications of es-dma

  • Determination of molecular weight of polymers and proteins in the range of 3.5 kDa to 2 MDa by correlating molecular weight and mobility diameter.
  • Determination of absolute number concentration of nanoparticles in solution by obtaining the ES droplet size distributions and using statistical analysis to find the original monomer concentration. Dimers or trimers can be formed in the electrospray process due to droplet induced aggregation and are observed in the spectrum.
  • Kinetics of aggregation of nanoparticles in solution by analysis of multimodal mobility distributions from which distinct types of aggregation states can be identified.
  • Quantification of ligand adsorption to bionanoparticles by measuring the reduction in electrical mobility of a complex particle (particle-protein) that corresponds to an increase in mobility diameter.

Characterization of sam-functionalized gold nanoparticles by es-dma

Citrate ( [link] ) stabilized gold nanoparticles (AuNPs) with diameter in the range 10-60 nm and conjugated AuNPs are analyzed by ES-DMA. This investigation shows that the formation of salt particles on the surface of AuNPs can interfere with the mobility analysis because of the reduction in analyte signals. Since sodium citrate is a non volatile soluble salt, ES produces two types of droplets. One droplet consists of AuNPs and salt and the other droplet contains only salt. Thus, samples must be cleaned by centrifugation prior to determine the size of bare AuNPs. [link] presents the size distribution of AuNPs of distinct diameters and peaks corresponding to salt residues.

Structure of citrate that provides charge stabilization to AuNPs.
Particle size distribution of 10 nm, 30 nm and 60 nm AuNPs after centrifugation cleaning. Reprinted with permission from D. Tsai, R. A. Zangmeister, L. F. Pease III, M. J. Tarlov and M. R. Zachariah. Langmuir , 2008, 24 , 8483. Copyright (2015) American Chemical Society.

The mobility size of bare AuNPs (d p0 ) can be obtained by using [link] , where d p,m and d s are mobility sizes of the AuNPs encrusted with salts and the salt NP, respectively. However, the presence of self-assembled monolayer (SAM) produces a difference in electrical mobility between conjugated and bare AuNPs. Hence, the determination of the diameter of AuNPs (salt-free) is critical to distinguish the increment in size after functionalization with SAM. The coating thickness of SAM that corresponds to the change in particle size (ΔL) is calculated by using [link] , where d p and d p0 are the coated and uncoated particle mobility diameters, respectively.

d p0 = d p , m 3 d s 3 3 size 12{ { size 24{d} } rSub { size 8{p0} } = nroot { size 8{3} } { { size 24{d} } rSub { size 8{p,m} } rSup { size 8{3} } - { size 24{d} } rSub { size 8{s} } rSup { size 8{3} } } } {}
ΔL = d p d p0 size 12{ΔL= { size 24{d} } rSub { size 8{p} } - { size 24{d} } rSub { size 8{p0} } } {}

In addition, the change in particle size can be determined by considering a simple rigid core-shell model that gives theoretical values of ΔL 1 higher than the experimental ones (ΔL). A modified core-shell model is proposed in which a size dependent effect on ΔL 2 is observed for a range of particle sizes. AuNPs of 10 nm and 60 nm are coated with MUA ( [link] ), a charge alkanethiol, and the particle size distributions of bare and coated AuNPs are presented in [link] . The increment in average particle size is 1.2 ± 0.1 nm for 10 nm AuNPs and 2.0 ± 0.3 nm for 60 nm AuNPs so that ΔL depends on particle size.

Structure of 11-mercaptoundecanoic acid (MUA).
Particle size distributions of bare versus MUA-coated AuNP for (a) 10 nm and (b) 60 nm. (c) A comparison of predicted ΔL from experiment (diamonds) with theory (ΔL 1 in dashed lines and ΔL 2 in solid lines). Reprinted with permission from D. Tsai, R. A. Zangmeister, L. F. Pease III, M. J. Tarlov, and M. R. Zachariah, Langmuir , 2008, 24 , 8483. Copyright (2015) American Chemical Society.

Advantages of es-dma

  • ES-DMA does not need prior information about particle type.
  • It characterizes broad particle size range and operates under ambient pressure conditions.
  • A few µL or less of sample volume is required and total time of analysis is 2-4 min.
  • Data interpretation and mobility spectra simple to analyze compared to ES-MS where there are several charge states.

Limitations of es-dma

  • Analysis requires the following solution conditions: concentrations of a few hundred µg/mL, low ionic strength (<100 mM) and volatile buffers.
  • Uncertainty is usually ± 0.3 nm from a size range of a few nm to around 100 nm. This is not appropriate to distinguish proteins with slight differences in molecular weight.

A tandem technique is ES-DMA-APM that determines mass of ligands adsorbed to nanoparticles after size selection with DMA. APM is an aerosol particle mass analyzer that measures mass of particles by balancing electrical and centrifugal forces. DMA-APM has been used to analyze the density of carbon nanotubes, the porosity of nanoparticles and the mass and density differences of metal nanoparticles that undergo oxidation.

Bibliography

  • http://www.iara.org/newsfolder/pioneers/8aerosolpioneereditedaugktwhitby.pdf
  • E. O. Knutson and K. T. Whitby. Aerosol Sci. , 1975, 6 , 443.
  • S. T. Kaufman, J. W. Skogen, F. D. Dorman, and F. Zarrin. Anal. Chem. , 1996, 68 , 1895.
  • R. C. Flagan. KONA , 2008, 26 , 254.
  • P. Intra and N. Tippayawong. Songklanakarin J. Sci. Technol ., 2008, 30 , 243.
  • D. Tsai, R. A. Zangmeister, L. F. Pease III, M. J. Tarlov, and M. R. Zachariah. Langmuir , 2008, 24 , 8483.
  • D. Tsai, L. F. Pease III, R. A. Zangmeister, M. J. Tarlov, and M. R. Zachariah. Langmuir , 2009, 25 , 140.
  • G. Bacher, W. W. Szymanski, S. T. Kaufman, P. Zollner, D. Blaas, and G. Allmaier. J. Mass Spectrom. , 2001, 36 , 1038.
  • M. Li, S. Guha, R. Zangmeister, M. J. Tarlov, and M. R. Zachariah. Langmuir , 2011, 27 , 14732.
  • S. Guha, M. Li, M. J. Tarlov, and M. R. Zachariah. Trends Biotechnol ., 2012, 30 , 291.
  • L. F. Pease III. Trends Biotechnol ., 2012, 30 , 216-224.
  • S. Guha, X. Ma, M. J. Tarlov, and M. R. Zachariah. Anal. Chem. , 2012, 84 , 6308.
  • Y. Tseng and L. F. Pease III. Nanomed-Nanotechnol ., 2014, 10 , 1591.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask