<< Chapter < Page Chapter >> Page >
This module describes use of circular dichroism spectroscopy.

Introduction

Circular dichroism (CD) spectroscopy is one of few structure assessmet methods that can be utilized as an alternative and amplification to many conventional analysis techniques with advatages such as rapid data collection and ease of use. Since most of the efforts and time spent in advancement of chemical sciences are devoted to elucidation and analysis of structure and composition of synthesized molecules or isolated natural products rather than their preparation, one should be aware of all the relevant techniques available and know which instrument can be employed as an alternative to any other technique.

The aim of this module is to introduce CD technique and discuss what kind of information one can collect using CD. Additionally, the advantages of CD compared to other analysis techniques and its limitations will be shown.

Optical activity

As CD spectroscopy can analyze only optically active species, it is convenient to start the module with a brief introduction of optical activity. In nature almost every life form is handed, meaning that there is certain degree of asymmetry, just like in our hands. One cannot superimpose right hand on the left because they are non-identical mirror images of one another. So are the chiral (handed) molecules, they exist as enantiomers, which mirror images of each other ( [link] ). One interesting phenomena related to chiral molecules is their ability to rotate plane of polarized light. Optical activity property is used to determine specific rotation, [ α ] T λ , of pure enantiomer. This feature is used in polarimetery to find the enantiomeric excess , (ee), present in sample.

Schematic depiction of chirality/handedness of an amino acid.

Circular dichroism

Circular dichroism (CD) spectroscopy is a powerful yet straightforward technique for examining different aspects of optically active organic and inorganic molecules. Circular dichroism has applications in variety of modern research fields ranging from biochemistry to inorganic chemistry. Such widespread use of the technique arises from its essential property of providing structural information that cannot be acquired by other means. One other laudable feature of CD is its being a quick, easy technique that makes analysis a matter of minutes. Nevertheless, just like all methods, CD has a number of limitations, which will be discussed while comparing CD to other analysis techniques.

CD spectroscopy and related techniques were considered as esoteric analysis techniques needed and accessible only to a small clandestine group of professionals. In order to make the reader more familiar with the technique, first of all, the principle of operation of CD and its several types, as well as related techniques will be shown. Afterwards, sample preparation and instrument use will be covered for protein secondary structure study case.

Depending on the light source used for generation of circularly polarized light, there are:

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask