<< Chapter < Page Chapter >> Page >
A summary of common methods used to characterize chemically functionalized single-walled carbon nanotubes (SWNTs).


Characterization of nanoparticles in general, and carbon nanotubes in particular, remains a technical challenge even though the chemistry of covalent functionalization has been studied for more than a decade. It has been noted by several researchers that the characterization of products represents a constant problem in nanotube chemistry. A systematic tool or suites of tools are needed for adequate characterization of chemically functionalized single-walled carbon nanotubes (SWNTs), and is necessary for declaration of success or failure in functionalization trials.

So far, a wide range of techniques have been applied to characterize functionalized SWNTs: infra red (IR), Raman, and UV/visible spectroscopies, thermogravimetric analysis (TGA), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), etc. A summary of the attribute of each of the characterization method is given in [link] .

Common characterization methodology for functionalized SWNTs.
Method Sample Information Limitations
TGA solid functionalization ratio no evidence for covalent functionalization, not specific
XPS solid elements, functionalization ratio no evidence of covalent functionalization, not specific, quantification complicated
Raman solid sp 3 indicated by D mode not specific, quantification not reliable
Infra red (IR) solid for (ATR-IR) or solution substituent groups no direct evidence for covalent functionalization, quantification not possible
UV/visible solution sidewall functionalization not specific or quantitative, need highly dispersed sample
Solution NMR solution substituents no evidence of covalent functionalization, high solubility of sample
Solid state NMR solid substituents, sp 3 molecular motions, quantification at high level of funcitionalization high functionalization needed, long time for signal acquisition, quantification not available for samples with protons on side chains
AFM solid on substrate topography only a small portion of sample characterized, no evidence of covalent functionalization, no chemical identity
TEM solid on substrate image of sample distribution dispersion only a small portion of sample characterized, no evidence of covalent functionalization, no chemical identity dispersion information complicated
STM solid on substrate distribution no chemical identity of functional groups small portion of sample conductive sample only

Elemental and physical analysis

Thermogravimetric analysis (tga)

Thermogravimetric analysis (TGA) is the mostly widely used method to determine the level of sidewall functionalization. Since most functional groups are labile or decompose upon heating, while the SWNTs are stable up to 1200 °C under Ar atmosphere. The weight loss at 800 °C under Ar is often used to determine functionalization ratio using this indirect method. Unfortunately, quantification can be complicated with presence of multiple functional groups. Also, TGA does not provide direct evidence for covalent functionalization since it cannot differentiate between covalent attachment and physical adsorption.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
advantages of NAA
Sai Reply
how I can reaction of mercury?
Sham Reply

Get the best Physical methods in ch... course in your pocket!

Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?