<< Chapter < Page Chapter >> Page >
This module is to explain the basic working principles and setups of supercritical fluid chromatography and supercritical fluid extraction methods.


The discovery of supercritical fluids led to novel analytical applications in the fields of chromatography and extraction known as supercritical fluid chromatography (SFC) and supercritical fluid extraction (SFE). Supercritical fluid chromatography is accepted as a column chromatography methods along with gas chromatography (GC) and high-performance liquid chromatography (HPLC). Due to to the properties of supercritical fluids, SFC combines each of the advantages of both GC and HPLC in one method. In addition, supercritical fluid extraction is an advanced analytical technique.

Definition and formation of supercritical fluids

A supercritical fluid is the phase of a material at critical temperature and critical pressure of the material. Critical temperature is the temperature at which a gas cannot become liquid as long as there is no extra pressure; and, critical pressure is the minimum amount of pressure to liquefy a gas at its critical temperature. Supercritical fluids combine useful properties of gas and liquid phases, as it can behave like both a gas and a liquid in terms of different aspects. A supercritical fluid provides a gas-like characteristic when it fills a container and it takes the shape of the container. The motion of the molecules are quite similar to gas molecules. On the other hand, a supercritical fluid behaves like a liquid because its density property is near liquid and, thus, a supercritical fluid shows a similarity to the dissolving effect of a liquid.

The characteristic properties of a supercritical fluid are density, diffusivity and viscosity. Supercritical values for these features take place between liquids and gases. [link] demonstrates numerical values of properties for gas, supercritical fluid and liquid.

Supercritical fluid properties compared to liquids and gases
Gas Supercritical fluid Liquid
Density (g/cm 3 ) 0.6 x 10 -3 – 2.0 x 10 -3 0.2 - 0.5 0.6 - 2.0
Diffusivity (cm 2 /s) 0.1 - 0.4 10 -3 - 10 -4 0.2 x 10 -5 - 2.0 x 10 -5
Viscosity (cm/s) 1 x 10 -4 - 3 x 10 -4 1 x 10 -4 - 3 x 10 -4 0.2 x 10 -2 - 3.0 x 10 -2

The formation of a supercritical fluid is the result of a dynamic equilibrium. When a material is heated to its specific critical temperature in a closed system, at constant pressure, a dynamic equilibrium is generated. This equilibrium includes the same number of molecules coming out of liquid phase to gas phase by gaining energy and going in to liquid phase from gas phase by losing energy. At this particular point, the phase curve between liquid and gas phases disappears and supercritical material appears.

In order to understand the definition of SF better, a simple phase diagram can be used. [link] displays an ideal phase diagram. For a pure material, a phase diagram shows the fields where the material is in the form of solid, liquid, and gas in terms of different temperature and pressure values. Curves, where two phases (solid-gas, solid-liquid and liquid-gas) exist together, defines the boundaries of the phase regions. These curves, for example, include sublimation for solid-gas boundary, melting for solid-liquid boundary, and vaporization for liquid-gas boundary. Other than these binary existence curves, there is a point where all three phases are present together in equilibrium; the triple point (TP).

Questions & Answers

how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
advantages of NAA
Sai Reply
how I can reaction of mercury?
Sham Reply

Get the best Physical methods in ch... course in your pocket!

Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?