<< Chapter < Page Chapter >> Page >

The intensity of the peak depends on the amount of material present, while the peak position is element dependent. Auger transitions characteristic of each elements can be found in the literature. Auger transitions of the first forty detectable elements are listed in [link] .

Selected AES transitions and their corresponding kinetic energy. Adapted from H. J. Mathieu in Surface Analysis: The Principal Techniques , Second Edition, Ed. J. C. Vickerman, Wiley-VCH, Weinheim (2011).
Atomic number Element AES transition Kinetic energy of transition (eV)
3 Li KLL 43
4 Be KLL 104
5 B KLL 179
6 C KLL 272
7 N KLL 379
8 O KLL 508
9 F KLL 647
11 Na KLL 990
12 Mg KLL 1186
13 Al LMM 68
14 Si LMM 92
15 P LMM 120
16 S LMM 152
17 Cl LMM 181
19 K KLL 252
20 Ca LMM 291
21 Sc LMM 340
22 Ti LMM 418
23 V LMM 473
24 Cr LMM 529
25 Mn LMM 589
26 Fe LMM 703
27 Co LMM 775
28 Ni LMM 848
29 Cu LMM 920
30 Zn LMM 994
31 Ga LMM 1070
32 Ge LMM 1147
33 As LMM 1228
34 Se LMM 1315
35 Br LMM 1376
39 Y MNN 127
40 Zr MNN 147
41 Nb MNN 167
42 Mo MNN 186

Instrumentation

Important elements of an Auger spectrometer include a vacuum system, an electron source, and a detector. AES must be performed at pressures less than 10 -3 pascal (Pa) to keep residual gases from adsorbing to the sample surface. This can be achieved using an ultra-high-vacuum system with pressures from 10 -8 to 10 -9 Pa. Typical electron sources include tungsten filaments with an electron beam diameter of 3 - 5 μm, LaB 6 electron sources with a beam diameter of less than 40 nm, and Schottky barrier filaments with a 20 nm beam diameter and high beam current density. Two common detectors are the cylindrical mirror analyzer and the concentric hemispherical analyzer discussed below. Notably, concentric hemispherical analyzers typically have better energy resolution.

Cylindrical mirror analyzer (cma)

A CMA is composed of an electron gun, two cylinders, and an electron detector ( [link] ). The operation of a CMA involves an electron gun being directed at the sample. An ejected electron then enters the space between the inner and outer cylinders (IC and OC). The inner cylinder is at ground potential, while the outer cylinder’s potential is proportional to the kinetic energy of the electron. Due to its negative potential, the outer cylinder deflects the electron towards the electron detector. Only electrons within the solid angle cone are detected. The resulting signal is proportional to the number of electrons detected as a function of kinetic energy.

Schematic of a cylindrical mirror analyzer.

Concentric hemispherical analyzer (cha)

A CHA contains three parts ( [link] ):

  1. A retarding and focusing input lens assembly.
  2. An inner and outer hemisphere (IH and OH).
  3. An electron detector.
Schematic of a concentric hemispherical analyzer.

Electrons ejected from the surface enter the input lens, which focuses the electrons and retards their energy for better resolution. Electrons then enter the hemispheres through an entrance slit. A potential difference is applied on the hemispheres so that only electrons with a small range of energy differences reach the exit. Finally, an electron detector analyzes the electrons.

Applications

AES has widespread use owing to its ability to analyze small spot sizes with diameters from 5 μm down to 10 nm depending on the electron gun. For instance, AES is commonly employed to study film growth and surface-chemical composition, as well as grain boundaries in metals and ceramics. It is also used for quality control surface analyses in integrated circuit production lines due to short acquisition times. Moreover, AES is used for areas that require high spatial resolution, which XPS cannot achieve. AES can also be used in conjunction with transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to obtain a comprehensive understanding of microscale materials, both chemically and structurally. As an example of combining techniques to investigate microscale materials, [link] shows the characterization of a single wire from a Sn-Nb multi-wire alloy. [link] a is a SEM image of the singular wire and [link] b is a schematic depicting the distribution of Nb and Sn within the wire. Point analysis was performed along the length of the wire to determine the percent concentrations of Nb and Sn.

Analysis of a Sn-Nb wire. (a) SEM image of the wire, (b) schematic of the elemental distribution, and (c) graphical representation of point analysis giving the percent concentration of Nb and Sn. Adapted from H. J. Mathieu in Surface Analysis: The Principal Techniques , Second Edition, Ed. J. C. Vickerman, Wiley-VCH, Weinheim (2011).

AES is widely used for depth profiling. Depth profiling allows the elemental distributions of layered samples 0.2 – 1 μm thick to be characterized beyond the escape depth limit of an electron. Varying the incident and collection angles, and the primary beam energy controls the analysis depth. In general, the depth resolution decreases with the square root of the sample thickness. Notably, in AES, it is possible to simultaneously sputter and collect Auger data for depth profiling. The sputtering time indicates the depth and the intensity indicates elemental concentrations. Since, the sputtering process does not affect the ejection of the Auger electron, helium or argon ions can be used to sputter the surface and create the trench, while collecting Auger data at the same time. The depth profile does not have the problem of diffusion of hydrocarbons into the trenches. Thus, AES is better for depth profiles of reactive metals (e.g., gold or any metal or semiconductor). Yet, care should be taken because sputtering can mix up different elements, changing the sample composition.

Limitations

While AES is a very valuable surface analysis technique, there are limitations. Because AES is a three-electron process, elements with less than three electrons cannot be analyzed. Therefore, hydrogen and helium cannot be detected. Nonetheless, detection is better for lighter elements with fewer transitions. The numerous transition peaks in heavier elements can cause peak overlap, as can the increased peak width of higher energy transitions. Detection limits of AES include 0.1 – 1% of a monolayer, 10 -16 – 10 -15 g of material, and 10 12 – 10 13 atoms/cm 2 .

Another limitation is sample destruction. Although focusing of the electron beam can improve resolution; the high-energy electrons can destroy the sample. To limit destruction, beam current densities of greater than 1 mA/cm 2 should be used. Furthermore, charging of the electron beam on insulating samples can deteriorate the sample and result in high-energy peak shifts or the appearance of large peaks.

Bibliography

  • H. Bubert, J. Rivière, and W. Werner, Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications , Second Edition, Ed. G. Friedbacher and H. Bubert, Wiley-VCH, Weinheim (2011).
  • H. Lüth in Solid Surfaces, Interfaces and Thin Films , Fifth Edition, Springer, New York (2010).
  • H. J. Mathieu in Surface Analysis: The Principal Techniques , Second Edition, Ed. J. C. Vickerman, Wiley-VCH, Weinheim (2011).
  • S. N. Raman, D. F. Paul, J. S. Hammond, and K. D. Bomben, Microscopy Today , 2011, 19 , 12.
  • N. Turner in Analytical Instrumentation Handbook, Second Edition, Ed. G. Ewing, Marcel Dekker, Inc, New York (1997).
  • J. F. Watts in Handbook of Adhesion Technology , Ed. Lucas F.M. da Silva, A. Öchsner, and R. Adams, Springer, New York (2011).
  • V. Young and G. Hoflund in Handbook of Surface and Interface Analysis Methods for Problem-Solving , Second Edition, Ed. J. Rivière and S. Myhra, CRC Press, Boca Raton (2009).

Questions & Answers

how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
advantages of NAA
Sai Reply
how I can reaction of mercury?
Sham Reply

Get the best Physical methods in ch... course in your pocket!





Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask