<< Chapter < Page Chapter >> Page >

Introduction

Dynamic light scattering (DLS), which is also known as photon correlation spectroscopy (PCS) or quasi-elastic light scattering (QLS), is a spectroscopy method used in the fields of chemistry, biochemistry, and physics to determine the size distribution of particles (polymers, proteins, colloids, etc.) in solution or suspension. In the DLS experiment, normally a laser provides the monochromatic incident light, which impinges onto a solution with small particles in Brownian motion. And then through the Rayleigh scattering process, particles whose sizes are sufficiently small compared to the wavelength of the incident light will diffract the incident light in all direction with different wavelengths and intensities as a function of time. Since the scattering pattern of the light is highly correlated to the size distribution of the analyzed particles, the size-related information of the sample could be then acquired by mathematically processing the spectral characteristics of the scattered light.

Herein a brief introduction of basic theories of DLS will be demonstrated, followed by descriptions and guidance on the instrument itself and the sample preparation and measurement process. Finally, data analysis of the DLS measurement, and the applications of DLS as well as the comparison against other size-determine techniques will be shown and summarized.

Theory

The theory of DLS can be introduced utilizing a model system of spherical particles in solution. According to the Rayleigh scattering ( [link] ), when a sample of particles with diameter smaller than the wavelength of the incident light, each particle will diffract the incident light in all directions, while the intensity I is determined by [link] , where I 0 and λ is the intensity and wavelength of the unpolarized incident light, R is the distance to the particle, θ is the scattering angel, n is the refractive index of the particle, and r is the radius of the particle.

Scheme of Rayleigh scattering.
I = I 0 1 + cos 2 θ 2R 2 ( λ ) 4 ( n 2 1 n 2 + 2 ) 2 r 6 size 12{I=I rSub { size 8{0} } { {1+"cos" rSup { size 8{2} } θ} over {2R rSup { size 8{2} } } } \( { {2π} over {λ} } \) rSup { size 8{4} } \( { {n rSup { size 8{2} } - 1} over {n rSup { size 8{2} } +2} } \) rSup { size 8{2} } r rSup { size 8{6} } } {}

If that diffracted light is projected as an image onto a screen, it will generate a “speckle" pattern ( [link] ); the dark areas represent regions where the diffracted light from the particles arrives out of phase interfering destructively and the bright area represent regions where the diffracted light arrives in phase interfering constructively.

Typical speckle pattern. J. W. Goodman, J. Opt. Soc. Am. , 1976, 66 , 1145. Copyright: Optical Society of America (1976).

In practice, particle samples are normally not stationary but moving randomly due to collisions with solvent molecules as described by the Brownian motion, [link] , where ( Δx ) 2 ¯ size 12{ {overline { \( Δx \) rSup { size 8{2} } }} } {} is the mean squared displacement in time t , and D is the diffusion constant, which is related to the hydrodynamic radius a of the particle according to the Stokes-Einstein equation, [link] , where k B is Boltzmann constant, T is the temperature, and μ is viscosity of the solution. Importantly, for a system undergoing Brownian motion, small particles should diffuse faster than large ones.

( Dx ) 2 ¯ = 2 Δt size 12{ {overline { \( Δx \) rSup { size 8{2} } }} =2 ital "Dt"} {}

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask