<< Chapter < Page Chapter >> Page >

Introduction

Gamma-ray (γ-ray) spectroscopy is a quick and nondestructive analytical technique that can be used to identify various radioactive isotopes in a sample. In gamma-ray spectroscopy, the energy of incident gamma-rays is measured by a detector. By comparing the measured energy to the known energy of gamma-rays produced by radioisotopes, the identity of the emitter can be determined. This technique has many applications, particularly in situations where rapid nondestructive analysis is required.

Background principles

Radioactive decay

The field of chemistry typically concerns itself with the behavior and interactions of stable isotopes of the elements. However, elements can exist in numerous states which are not stable. For example, a nucleus can have too many neutrons for the number of protons it has or contrarily, it can have too few neutrons for the number of protons it has. Alternatively, the nuclei can exist in an excited state, wherein a nucleon is present in an energy state that is higher than the ground state. In all of these cases, the unstable state is at a higher energy state and the nucleus must undergo some kind of decay process to reduce that energy.

There are many types of radioactive decay, but type most relevant to gamma-ray spectroscopy is gamma decay. When a nucleus undergoes radioactive decay by α or β decay, the resultant nucleus produced by this process, often called the daughter nucleus, is frequently in an excited state. Similar to how electrons are found in discrete energy levels around a nucleus, nucleons are found in discrete energy levels within the nucleus. In γ decay, the excited nucleon decays to a lower energy state and the energy difference is emitted as a quantized photon. Because nuclear energy levels are discrete, the transitions between energy levels are fixed for a given transition. The photon emitted from a nuclear transition is known as a γ-ray.

Radioactive decay kinetics and equilibria

Radioactive decay, with few exceptions, is independent of the physical conditions surrounding the radioisotope. As a result, the probability of decay at any given instant is constant for any given nucleus of that particular radioisotope. We can use calculus to see how the number of parent nuclei present varies with time. The time constant, λ, is a representation of the rate of decay for a given nuclei, [link] .

If the symbol N 0 is used to represent the number of radioactive nuclei present at t = 0, then the following equation describes the number of nuclei present at some given time.

The same equation can be applied to the measurement of radiation with some sort of detector. The count rate will decrease from some initial count rate in the same manner that the number of nuclei will decrease from some initial number of nuclei.

The decay rate can also be represented in a way that is more easily understood. The equation describing half-life (t 1/2 ) is shown in [link] .

The half-life has units of time and is a measure of how long it takes for the number of radioactive nuclei in a given sample to decrease to half of the initial quantity. It provides a conceptually easy way to compare the decay rates of two radioisotopes. If one has a the same number of starting nuclei for two radioisotopes, one with a short half-life and one with a long half-life, then the count rate will be higher for the radioisotope with the short half-life, as many more decay events must happen per unit time in order for the half-life to be shorter.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask