<< Chapter < Page Chapter >> Page >
V H = v B w ,

where V H is the Hall voltage; v is the hole’s drift velocity    , or average velocity of a particle that moves in a partially random fashion; B is the magnetic field strength; and w is the width of the strip. Note that the Hall voltage is transverse to the voltage that initially produces current through the material. A measurement of the sign of this voltage (or potential difference) confirms the collection of holes on the top side of the strip. The magnitude of the Hall voltage yields the drift velocity ( v ) of the majority carriers.

Additional information can also be extracted from the Hall voltage. Note that the electron current density (the amount of current per unit cross-sectional area of the semiconductor strip) is

j = n q v ,

where q is the magnitude of the charge, n is the number of charge carriers per unit volume, and v is the drift velocity. The current density is easily determined by dividing the total current by the cross-sectional area of the strip, q is charge of the hole (the magnitude of the charge of a single electron), and u is determined by the Hall effect [link] . Hence, the above expression for the electron current density gives the number of charge carriers per unit volume, n . A similar analysis can be conducted for negatively charged carriers in an n -type material (see [link] ).

Figure a shows a plate of length L, width W and thickness t. A voltage source VX is connected across its length. The current in the loop, I is in the clockwise direction. A voltage source VH is connected across the width of the plate. The current in the loop, BZ, is anticlockwise. An arrow on the plate is labeled E. It points right. Figure b is similar to figure a, except that the polarities of VX and VH are reversed and the directions of I, BZ and E are also reversed.
The Hall effect. (a) Positively charged electron holes are drawn to the left by a uniform magnetic field that points downward. An electric field is generated to the right. (b) Negative charged electrons are drawn to the left by a magnetic field that points up. An electric field is generated to the left.

Summary

  • The energy structure of a semiconductor can be altered by substituting one type of atom with another (doping).
  • Semiconductor n -type doping creates and fills new energy levels just below the conduction band.
  • Semiconductor p -type doping creates new energy levels just above the valence band.
  • The Hall effect can be used to determine charge, drift velocity, and charge carrier number density of a semiconductor.

Conceptual questions

What kind of semiconductor is produced if germanium is doped with (a) arsenic, and (b) gallium?

a. Germanium has four valence electrons. If germanium doped with arsenic (five valence electrons), four are used in bonding and one electron will be left for conduction. This produces an n -type material. b. If germanium is doped with gallium (three valence electrons), all three electrons are used in bonding, leaving one hole for conduction. This results in a p -type material.

Got questions? Get instant answers now!

What kind of semiconductor is produced if silicon is doped with (a) phosphorus, and (b) indium?

Got questions? Get instant answers now!

What is the Hall effect and what is it used for?

The Hall effect is the production of a potential difference due to motion of a conductor through an external magnetic field. This effect can be used to determine the drift velocity of the charge carriers (electrons or hole). If the current density is measured, this effect can also determine the number of charge carriers per unit volume.

Got questions? Get instant answers now!

For an n -type semiconductor, how do impurity atoms alter the energy structure of the solid?

Got questions? Get instant answers now!

For a p -type semiconductor, how do impurity atoms alter the energy structure of the solid?

It produces new unfilled energy levels just above the filled valence band. These levels accept electrons from the valence band.

Got questions? Get instant answers now!

Problems

An experiment is performed to demonstrate the Hall effect. A thin rectangular strip of semiconductor with width 10 cm and length 30 cm is attached to a battery and immersed in a 1.50- T field perpendicular to its surface. This produced a Hall voltage of 12 V. What is the drift velocity of the charge carriers?

Got questions? Get instant answers now!

Suppose that the cross-sectional area of the strip (the area of the face perpendicular to the electric current) presented to the in the preceding problem is 1 mm 2 and the current is independently measured to be 2 mA. What is the number density of the charge carriers?

n = 1.56 × 10 19 holes/m 3

Got questions? Get instant answers now!

A current-carrying copper wire with cross-section σ = 2 mm 2 has a drift velocity of 0.02 cm/s. Find the total current running through the wire.

Got questions? Get instant answers now!

The Hall effect is demonstrated in the laboratory. A thin rectangular strip of semiconductor with width 5 cm and cross-sectional area 2 mm 2 is attached to a battery and immersed in a field perpendicular to its surface. The Hall voltage reads 12.5 V and the measured drift velocity is 50 m/s. What is the magnetic field?

5 T

Got questions? Get instant answers now!

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask