<< Chapter < Page Chapter >> Page >

Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency.

Coverage and scope

Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project.

VOLUME I

Unit 1: Mechanics

  • Chapter 1: Units and Measurement
  • Chapter 2: Vectors
  • Chapter 3: Motion Along a Straight Line
  • Chapter 4: Motion in Two and Three Dimensions
  • Chapter 5: Newton’s Laws of Motion
  • Chapter 6: Applications of Newton’s Laws
  • Chapter 7: Work and Kinetic Energy
  • Chapter 8: Potential Energy and Conservation of Energy
  • Chapter 9: Linear Momentum and Collisions
  • Chapter 10: Fixed-Axis Rotation
  • Chapter 11: Angular Momentum
  • Chapter 12: Static Equilibrium and Elasticity
  • Chapter 13: Gravitation
  • Chapter 14: Fluid Mechanics

Unit 2: Waves and Acoustics

  • Chapter 15: Oscillations
  • Chapter 16: Waves
  • Chapter 17: Sound

VOLUME II

Unit 1: Thermodynamics

  • Chapter 1: Temperature and Heat
  • Chapter 2: The Kinetic Theory of Gases
  • Chapter 3: The First Law of Thermodynamics
  • Chapter 4: The Second Law of Thermodynamics

Unit 2: Electricity and Magnetism

  • Chapter 5: Electric Charges and Fields
  • Chapter 6: Gauss’s Law
  • Chapter 7: Electric Potential
  • Chapter 8: Capacitance
  • Chapter 9: Current and Resistance
  • Chapter 10: Direct-Current Circuits
  • Chapter 11: Magnetic Forces and Fields
  • Chapter 12: Sources of Magnetic Fields
  • Chapter 13: Electromagnetic Induction
  • Chapter 14: Inductance
  • Chapter 15: Alternating-Current Circuits
  • Chapter 16: Electromagnetic Waves

VOLUME III

Unit 1: Optics

  • Chapter 1: The Nature of Light
  • Chapter 2: Geometric Optics and Image Formation
  • Chapter 3: Interference
  • Chapter 4: Diffraction

Unit 2: Modern Physics

  • Chapter 5: Relativity
  • Chapter 6: Photons and Matter Waves
  • Chapter 7: Quantum Mechanics
  • Chapter 8: Atomic Structure
  • Chapter 9: Condensed Matter Physics
  • Chapter 10: Nuclear Physics
  • Chapter 11: Particle Physics and Cosmology

Pedagogical foundation

Throughout University Physics you will find derivations of concepts that present classical ideas and techniques, as well as modern applications and methods. Most chapters start with observations or experiments that place the material in a context of physical experience. Presentations and explanations rely on years of classroom experience on the part of long-time physics professors, striving for a balance of clarity and rigor that has proven successful with their students. Throughout the text, links enable students to review earlier material and then return to the present discussion, reinforcing connections between topics. Key historical figures and experiments are discussed in the main text (rather than in boxes or sidebars), maintaining a focus on the development of physical intuition. Key ideas, definitions, and equations are highlighted in the text and listed in summary form at the end of each chapter. Examples and chapter-opening images often include contemporary applications from daily life or modern science and engineering that students can relate to, from smart phones to the internet to GPS devices.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask