<< Chapter < Page Chapter >> Page >

where the energies are given by [link] .

The quantum particle in a box model has practical applications in a relatively newly emerged field of optoelectronics, which deals with devices that convert electrical signals into optical signals. This model also deals with nanoscale physical phenomena, such as a nanoparticle trapped in a low electric potential bounded by high-potential barriers.

Summary

  • Energy states of a quantum particle in a box are found by solving the time-independent Schrӧdinger equation.
  • To solve the time-independent Schrӧdinger equation for a particle in a box and find the stationary states and allowed energies, we require that the wave function terminate at the box wall.
  • Energy states of a particle in a box are quantized and indexed by principal quantum number.
  • The quantum picture differs significantly from the classical picture when a particle is in a low-energy state of a low quantum number.
  • In the limit of high quantum numbers, when the quantum particle is in a highly excited state, the quantum description of a particle in a box coincides with the classical description, in the spirit of Bohr’s correspondence principle.

Conceptual questions

Using the quantum particle in a box model, describe how the possible energies of the particle are related to the size of the box.

Got questions? Get instant answers now!

Is it possible that when we measure the energy of a quantum particle in a box, the measurement may return a smaller value than the ground state energy? What is the highest value of the energy that we can measure for this particle?

No. For an infinite square well, the spacing between energy levels increases with the quantum number n . The smallest energy measured corresponds to the transition from n = 2 to 1, which is three times the ground state energy. The largest energy measured corresponds to a transition from n = to 1, which is infinity. (Note: Even particles with extremely large energies remain bound to an infinite square well—they can never “escape”)

Got questions? Get instant answers now!

For a quantum particle in a box, the first excited state ( Ψ 2 ) has zero value at the midpoint position in the box, so that the probability density of finding a particle at this point is exactly zero. Explain what is wrong with the following reasoning: “If the probability of finding a quantum particle at the midpoint is zero, the particle is never at this point, right? How does it come then that the particle can cross this point on its way from the left side to the right side of the box?

Got questions? Get instant answers now!

Problems

Assume that an electron in an atom can be treated as if it were confined to a box of width 2 .0 Å . What is the ground state energy of the electron? Compare your result to the ground state kinetic energy of the hydrogen atom in the Bohr’s model of the hydrogen atom.

9.4 eV, 64%

Got questions? Get instant answers now!

Assume that a proton in a nucleus can be treated as if it were confined to a one-dimensional box of width 10.0 fm. (a) What are the energies of the proton when it is in the states corresponding to n = 1 , n = 2 , and n = 3 ? (b) What are the energies of the photons emitted when the proton makes the transitions from the first and second excited states to the ground state?

Got questions? Get instant answers now!

An electron confined to a box has the ground state energy of 2.5 eV. What is the width of the box?

0.38 nm

Got questions? Get instant answers now!

What is the ground state energy (in eV) of a proton confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?

Got questions? Get instant answers now!

What is the ground state energy (in eV) of an α -particle confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?

1.82 MeV

Got questions? Get instant answers now!

To excite an electron in a one-dimensional box from its first excited state to its third excited state requires 20.0 eV. What is the width of the box?

Got questions? Get instant answers now!

An electron confined to a box of width 0.15 nm by infinite potential energy barriers emits a photon when it makes a transition from the first excited state to the ground state. Find the wavelength of the emitted photon.

24.7 nm

Got questions? Get instant answers now!

If the energy of the first excited state of the electron in the box is 25.0 eV, what is the width of the box?

Got questions? Get instant answers now!

Suppose an electron confined to a box emits photons. The longest wavelength that is registered is 500.0 nm. What is the width of the box?

6.03 Å

Got questions? Get instant answers now!

Hydrogen H 2 molecules are kept at 300.0 K in a cubical container with a side length of 20.0 cm. Assume that you can treat the molecules as though they were moving in a one-dimensional box. (a) Find the ground state energy of the hydrogen molecule in the container. (b) Assume that the molecule has a thermal energy given by k B T / 2 and find the corresponding quantum number n of the quantum state that would correspond to this thermal energy.

Got questions? Get instant answers now!

An electron is confined to a box of width 0.25 nm. (a) Draw an energy-level diagram representing the first five states of the electron. (b) Calculate the wavelengths of the emitted photons when the electron makes transitions between the fourth and the second excited states, between the second excited state and the ground state, and between the third and the second excited states.

a.
The wave functions for the n=1 through n=5 states of the electron in an infinite square well are shown. Each function is displaced vertically by its energy, measured in m e V. The n=1 state is the first half wave of the sine function. The n=2 function is the first full wave of the sine function. The n=3 function is the first one and a half waves of the sine function. The n=4 function is the first two waves of the sine function. The n=5 function is the first two and a half waves of the sine function. ;
b. λ 5 3 = 12.9 nm, λ 3 1 = 25.8 nm, λ 4 3 = 29.4 nm

Got questions? Get instant answers now!

An electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask