<< Chapter < Page Chapter >> Page >

Significance

The large distance between the red and violet ends of the rainbow produced from the white light indicates the potential this diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths (greater dispersion), the more detail can be seen in a spectrum. This depends on the quality of the diffraction grating—it must be very precisely made in addition to having closely spaced lines.

Check Your Understanding If the line spacing of a diffraction grating d is not precisely known, we can use a light source with a well-determined wavelength to measure it. Suppose the first-order constructive fringe of the H β emission line of hydrogen ( λ = 656.3 nm ) is measured at 11.36 ° using a spectrometer with a diffraction grating. What is the line spacing of this grating?

3.332 × 10 −6 m or 300 lines per millimeter

Got questions? Get instant answers now!

Take the same simulation we used for double-slit diffraction and try increasing the number of slits from N = 2 to N = 3 , 4 , 5.. . . The primary peaks become sharper, and the secondary peaks become less and less pronounced. By the time you reach the maximum number of N = 20 , the system is behaving much like a diffraction grating.

Summary

  • A diffraction grating consists of a large number of evenly spaced parallel slits that produce an interference pattern similar to but sharper than that of a double slit.
  • Constructive interference occurs when d sin θ = m λ for m = 0 , ± 1 , ± 2 , ... , where d is the distance between the slits, θ is the angle relative to the incident direction, and m is the order of the interference.

Problems

A diffraction grating has 2000 lines per centimeter. At what angle will the first-order maximum be for 520-nm-wavelength green light?

5.97 °

Got questions? Get instant answers now!

Find the angle for the third-order maximum for 580-nm-wavelength yellow light falling on a difraction grating having 1500 lines per centimeter.

Got questions? Get instant answers now!

How many lines per centimeter are there on a diffraction grating that gives a first-order maximum for 470-nm blue light at an angle of 25.0 ° ?

8.99 × 10 3

Got questions? Get instant answers now!

What is the distance between lines on a diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60.0 ° ?

Got questions? Get instant answers now!

Calculate the wavelength of light that has its second-order maximum at 45.0 ° when falling on a diffraction grating that has 5000 lines per centimeter.

707 nm

Got questions? Get instant answers now!

An electric current through hydrogen gas produces several distinct wavelengths of visible light. What are the wavelengths of the hydrogen spectrum, if they form first-order maxima at angles 24.2 ° , 25.7 ° , 29.1 ° , and 41.0 ° when projected on a diffraction grating having 10,000 lines per centimeter?

Got questions? Get instant answers now!

(a) What do the four angles in the preceding problem become if a 5000-line per centimeter diffraction grating is used? (b) Using this grating, what would the angles be for the second-order maxima? (c) Discuss the relationship between integral reductions in lines per centimeter and the new angles of various order maxima.

a. 11.8 ° , 12.5 ° , 14.1 ° , 19.2 ° ; b. 24.2 ° , 25.7 ° , 29.1 ° , 41.0 ° ; c. Decreasing the number of lines per centimeter by a factor of x means that the angle for the x -order maximum is the same as the original angle for the first-order maximum.

Got questions? Get instant answers now!

What is the spacing between structures in a feather that acts as a reflection grating, giving that they produce a first-order maximum for 525-nm light at a 30.0 ° angle?

Got questions? Get instant answers now!

An opal such as that shown in [link] acts like a reflection grating with rows separated by about 8 μm . If the opal is illuminated normally, (a) at what angle will red light be seen and (b) at what angle will blue light be seen?

a. using λ = 700 nm, θ = 5 .0 ° ; b. using λ = 460 nm, θ = 3 .3 °

Got questions? Get instant answers now!

At what angle does a diffraction grating produce a second-order maximum for light having a first-order maximum at 20.0 ° ?

Got questions? Get instant answers now!

(a) Find the maximum number of lines per centimeter a diffraction grating can have and produce a maximum for the smallest wavelength of visible light. (b) Would such a grating be useful for ultraviolet spectra? (c) For infrared spectra?

a. 26,300 lines/cm; b. yes; c. no

Got questions? Get instant answers now!

(a) Show that a 30,000 line per centimeter grating will not produce a maximum for visible light. (b) What is the longest wavelength for which it does produce a first-order maximum? (c) What is the greatest number of line per centimeter a diffraction grating can have and produce a complete second-order spectrum for visible light?

Got questions? Get instant answers now!

The analysis shown below also applies to diffraction gratings with lines separated by a distance d . What is the distance between fringes produced by a diffraction grating having 125 lines per centimeter for 600-nm light, if the screen is 1.50 m away? ( Hin t : The distance between adjacent fringes is Δ y = x λ / d , assuming the slit separation d is comparable to λ . )

Figure shows two vertical lines, grating on the left and screen on the right separated by a line of length x, perpendicular to them both. There are two slits in the grating, a distance d apart. A line at an angle theta to x meets the screen at point delta y equal to x lambda by d.

1.13 × 10 −2 m

Got questions? Get instant answers now!

Questions & Answers

how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
How does fringe intensity depend upon slit width in single slit diffraction?
Abhishek Reply
VOLTE
Md Reply
about nuclear angular momentum
rahul Reply
what is spin
MUKESH Reply
what concepts do you need?
Sumit Reply
l want physics concepts but I have not clarify on the main concepts of physics because I have studied 10 th class in Telugu medium .so what I will do
seshu Reply
what is electro magnet
Ismail Reply
What is magnetic circuit
Ismail Reply
refraction and reflection of the ultrasound through different tissues ( why it happens and how, including "acoustic impedance") I need help :(
Rhea Reply
why accelerated charged particle produce EM radiations?
Shubham Reply
what r the smallest particle that cannot be divided further..
Munna Reply
lepton are sub atomic particles, such as neutrinos
Dominic Reply
what is lapton???
Rizwan Reply
Wat is normalisation expectation values of operators
RITHIK Reply
Practice Key Terms 1

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask