<< Chapter < Page Chapter >> Page >
An illustration of a GPS satellite
Special relativity explains how time passes slightly differently on Earth and within the rapidly moving global positioning satellite (GPS). GPS units in vehicles could not find their correct location on Earth without taking this correction into account. (credit: USAF)

The special theory of relativity was proposed in 1905 by Albert Einstein (1879–1955). It describes how time, space, and physical phenomena appear in different frames of reference that are moving at constant velocity with respect to each other. This differs from Einstein’s later work on general relativity, which deals with any frame of reference, including accelerated frames.

The theory of relativity led to a profound change in the way we perceive space and time. The “common sense” rules that we use to relate space and time measurements in the Newtonian worldview differ seriously from the correct rules at speeds near the speed of light. For example, the special theory of relativity tells us that measurements of length and time intervals are not the same in reference frames moving relative to one another. A particle might be observed to have a lifetime of 1.0 × 10 8 s in one reference frame, but a lifetime of 2.0 × 10 8 s in another; and an object might be measured to be 2.0 m long in one frame and 3.0 m long in another frame. These effects are usually significant only at speeds comparable to the speed of light, but even at the much lower speeds of the global positioning satellite, which requires extremely accurate time measurements to function, the different lengths of the same distance in different frames of reference are significant enough that they need to be taken into account.

Unlike Newtonian mechanics , which describes the motion of particles, or Maxwell's equations , which specify how the electromagnetic field behaves, special relativity is not restricted to a particular type of phenomenon. Instead, its rules on space and time affect all fundamental physical theories.

The modifications of Newtonian mechanics in special relativity do not invalidate classical Newtonian mechanics or require its replacement. Instead, the equations of relativistic mechanics differ meaningfully from those of classical Newtonian mechanics only for objects moving at relativistic speeds (i.e., speeds less than, but comparable to, the speed of light). In the macroscopic world that you encounter in your daily life, the relativistic equations reduce to classical equations, and the predictions of classical Newtonian mechanics agree closely enough with experimental results to disregard relativistic corrections.

Questions & Answers

what is force
Afework Reply
The different examples for collision
Afework
What is polarization and there are type
Muhammed Reply
Polarization is the process of transforming unpolarized light into polarized light. types of polarization 1. linear polarization. 2. circular polarization. 3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
Aishwarya Reply
how is tan ninety minus an angle equals to cot an angle?
Niicommey Reply
please I don't understand all about this things going on here
Jeremiah Reply
What is torque?
Matthew Reply
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force . Specifically, it is a force exerted at a distance from an object's axis of rotation. In the same way that a force applied to an object will cause it to move linearly, a torque applied to an object will cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So, a net torque will cause an object to rotate with an angular acceleration. Because all rotational motions have an axis of rotation, a torque must be defined about a rotational axis. A torque is a force applied to a point on an object about the axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
Marifel Reply
how to convert:m^3/s^2 all divided by kg to cm^3/s^2
Thibaza Reply
Is there any proof of existence of luminiferious aether ?
Zero Reply
mass conversion of 58.73kg =mg
Proactive Reply
is Space time fabric real
Godawari Reply
What's the relationship between the work function and the cut off frequency in the diagram above?
frankline Reply
due to the upthrust weight of the object varise with force in which the body fall into the water pendincular with the reflection of light with it
Gift
n=I/r
Gift
can someone explain what is going on here
falanga
so some pretty easy physics questions bring em
falanga
what is meant by fluctuated
Olasukanmi Reply
If n=cv then how v=cn? and if n=c/v then how v=cn?
Natanim
convert feet to metre
Mbah Reply
what is electrolysis
Mbah
Electrolysis is the chemical decomposition of electrolyte either in molten state or solution to conduct electricity
Ayomide
class ninekasindhtextbookurdusave
Ayesha Reply
can someone help explain why v2/c2 is =1/2 Using The Lorentz Transformation For Time Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati
Jennifer

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask