<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the classical free electron model of metals in terms of the concept electron number density
  • Explain the quantum free-electron model of metals in terms of Pauli’s exclusion principle
  • Calculate the energy levels and energy-level spacing of a free electron in a metal

Metals, such as copper and aluminum, are held together by bonds that are very different from those of molecules. Rather than sharing and exchanging electrons, a metal is essentially held together by a system of free electrons that wander throughout the solid. The simplest model of a metal is the free electron model    . This model views electrons as a gas. We first consider the simple one-dimensional case in which electrons move freely along a line, such as through a very thin metal rod. The potential function U ( x ) for this case is a one-dimensional infinite square well where the walls of the well correspond to the edges of the rod. This model ignores the interactions between the electrons but respects the exclusion principle. For the special case of T = 0 K , N electrons fill up the energy levels, from lowest to highest, two at a time (spin up and spin down), until the highest energy level is filled. The highest energy filled is called the Fermi energy    .

The one-dimensional free electron model can be improved by considering the three-dimensional case: electrons moving freely in a three-dimensional metal block. This system is modeled by a three-dimensional infinite square well. Determining the allowed energy states requires us to solve the time-independent Schrödinger equation

h 2 2 m e ( 2 x 2 + 2 y 2 + 2 z 2 ) ψ ( x , y , z ) = E ψ ( x , y , z ) ,

where we assume that the potential energy inside the box is zero and infinity otherwise. The allowed wave functions describing the electron’s quantum states can be written as

ψ ( x , y , z ) = ( 2 L x sin n x π x L x ) ( 2 L y sin n y π y L y ) ( 2 L z sin n z π z L z ) ,

where n x , n y , and n z are positive integers representing quantum numbers corresponding to the motion in the x -, y -, and z -directions, respectively, and L x , L y , and L z are the dimensions of the box in those directions. [link] is simply the product of three one-dimensional wave functions. The allowed energies of an electron in a cube ( L = L x = L y = L z ) are

E = π 2 2 2 m L 2 ( n 1 2 + n 2 2 + n 3 2 ) .

Associated with each set of quantum numbers ( n x , n y , n z ) are two quantum states, spin up and spin down. In a real material, the number of filled states is enormous. For example, in a cubic centimeter of metal, this number is on the order of 10 22 . Counting how many particles are in which state is difficult work, which often requires the help of a powerful computer. The effort is worthwhile, however, because this information is often an effective way to check the model.

Energy of a metal cube

Consider a solid metal cube of edge length 2.0 cm. (a) What is the lowest energy level for an electron within the metal? (b) What is the spacing between this level and the next energy level?

Strategy

An electron in a metal can be modeled as a wave. The lowest energy corresponds to the largest wavelength and smallest quantum number: n x , n y , n z = ( 1 , 1 , 1 ) . [link] supplies this “ground state” energy value. Since the energy of the electron increases with the quantum number, the next highest level involves the smallest increase in the quantum numbers, or ( n x , n y , n z ) = ( 2 , 1 , 1 ) , ( 1 , 2 , 1 ) , or (1, 1, 2).

Solution

The lowest energy level corresponds to the quantum numbers n x = n y = n z = 1 . From [link] , the energy of this level is

E ( 1 , 1 , 1 ) = π 2 h 2 2 m e L 2 ( 1 2 + 1 2 + 1 2 ) = 3 π 2 ( 1.05 × 10 34 J · s ) 2 2 ( 9.11 × 10 −31 kg ) ( 2.00 × 10 −2 m ) 2 = 4.48 × 10 −34 J = 2.80 × 10 −15 eV .

The next-higher energy level is reached by increasing any one of the three quantum numbers by 1. Hence, there are actually three quantum states with the same energy. Suppose we increase n x by 1. Then the energy becomes

E ( 2 , 1 , 1 ) = π 2 h 2 2 m e L 2 ( 2 2 + 1 2 + 1 2 ) = 6 π 2 ( 1.05 × 10 34 J · s ) 2 2 ( 9.11 × 10 −31 kg ) ( 2.00 × 10 −2 m ) 2 = 8.96 × 10 −34 J = 5.60 × 10 −15 eV .

The energy spacing between the lowest energy state and the next-highest energy state is therefore

E ( 2 , 1 , 1 ) E ( 1 , 1 , 1 ) = 2.80 × 10 −15 eV .

Significance

This is a very small energy difference. Compare this value to the average kinetic energy of a particle, k B T , where k B is Boltzmann’s constant and T is the temperature. The product k B T is about 1000 times greater than the energy spacing.

Got questions? Get instant answers now!

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask