<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the classical free electron model of metals in terms of the concept electron number density
  • Explain the quantum free-electron model of metals in terms of Pauli’s exclusion principle
  • Calculate the energy levels and energy-level spacing of a free electron in a metal

Metals, such as copper and aluminum, are held together by bonds that are very different from those of molecules. Rather than sharing and exchanging electrons, a metal is essentially held together by a system of free electrons that wander throughout the solid. The simplest model of a metal is the free electron model    . This model views electrons as a gas. We first consider the simple one-dimensional case in which electrons move freely along a line, such as through a very thin metal rod. The potential function U ( x ) for this case is a one-dimensional infinite square well where the walls of the well correspond to the edges of the rod. This model ignores the interactions between the electrons but respects the exclusion principle. For the special case of T = 0 K , N electrons fill up the energy levels, from lowest to highest, two at a time (spin up and spin down), until the highest energy level is filled. The highest energy filled is called the Fermi energy    .

The one-dimensional free electron model can be improved by considering the three-dimensional case: electrons moving freely in a three-dimensional metal block. This system is modeled by a three-dimensional infinite square well. Determining the allowed energy states requires us to solve the time-independent Schrödinger equation

h 2 2 m e ( 2 x 2 + 2 y 2 + 2 z 2 ) ψ ( x , y , z ) = E ψ ( x , y , z ) ,

where we assume that the potential energy inside the box is zero and infinity otherwise. The allowed wave functions describing the electron’s quantum states can be written as

ψ ( x , y , z ) = ( 2 L x sin n x π x L x ) ( 2 L y sin n y π y L y ) ( 2 L z sin n z π z L z ) ,

where n x , n y , and n z are positive integers representing quantum numbers corresponding to the motion in the x -, y -, and z -directions, respectively, and L x , L y , and L z are the dimensions of the box in those directions. [link] is simply the product of three one-dimensional wave functions. The allowed energies of an electron in a cube ( L = L x = L y = L z ) are

E = π 2 2 2 m L 2 ( n 1 2 + n 2 2 + n 3 2 ) .

Associated with each set of quantum numbers ( n x , n y , n z ) are two quantum states, spin up and spin down. In a real material, the number of filled states is enormous. For example, in a cubic centimeter of metal, this number is on the order of 10 22 . Counting how many particles are in which state is difficult work, which often requires the help of a powerful computer. The effort is worthwhile, however, because this information is often an effective way to check the model.

Energy of a metal cube

Consider a solid metal cube of edge length 2.0 cm. (a) What is the lowest energy level for an electron within the metal? (b) What is the spacing between this level and the next energy level?

Strategy

An electron in a metal can be modeled as a wave. The lowest energy corresponds to the largest wavelength and smallest quantum number: n x , n y , n z = ( 1 , 1 , 1 ) . [link] supplies this “ground state” energy value. Since the energy of the electron increases with the quantum number, the next highest level involves the smallest increase in the quantum numbers, or ( n x , n y , n z ) = ( 2 , 1 , 1 ) , ( 1 , 2 , 1 ) , or (1, 1, 2).

Solution

The lowest energy level corresponds to the quantum numbers n x = n y = n z = 1 . From [link] , the energy of this level is

E ( 1 , 1 , 1 ) = π 2 h 2 2 m e L 2 ( 1 2 + 1 2 + 1 2 ) = 3 π 2 ( 1.05 × 10 34 J · s ) 2 2 ( 9.11 × 10 −31 kg ) ( 2.00 × 10 −2 m ) 2 = 4.48 × 10 −34 J = 2.80 × 10 −15 eV .

The next-higher energy level is reached by increasing any one of the three quantum numbers by 1. Hence, there are actually three quantum states with the same energy. Suppose we increase n x by 1. Then the energy becomes

E ( 2 , 1 , 1 ) = π 2 h 2 2 m e L 2 ( 2 2 + 1 2 + 1 2 ) = 6 π 2 ( 1.05 × 10 34 J · s ) 2 2 ( 9.11 × 10 −31 kg ) ( 2.00 × 10 −2 m ) 2 = 8.96 × 10 −34 J = 5.60 × 10 −15 eV .

The energy spacing between the lowest energy state and the next-highest energy state is therefore

E ( 2 , 1 , 1 ) E ( 1 , 1 , 1 ) = 2.80 × 10 −15 eV .

Significance

This is a very small energy difference. Compare this value to the average kinetic energy of a particle, k B T , where k B is Boltzmann’s constant and T is the temperature. The product k B T is about 1000 times greater than the energy spacing.

Got questions? Get instant answers now!

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask