<< Chapter < Page Chapter >> Page >
β 1 = 26.254 ( 10.00 eV E 1 ) / eV 1 nm = 26.254 ( 10.00 7.00 ) 1 nm = 8.875 nm ,
T ( L , E 1 ) = 16 E 1 U 0 ( 1 E 1 U 0 ) e 2 β 1 L = 16 7 10 ( 1 7 10 ) e 17.75 L / nm = 3.36 e 17.75 L / nm .

For a higher-energy electron with E 2 = 9.00 eV :

β 2 = 26.254 ( 10.00 eV E 2 ) / eV 1 nm = 26.254 ( 10.00 9.00 ) 1 nm = 5.124 nm ,
T ( L , E 2 ) = 16 E 2 U 0 ( 1 E 2 U 0 ) e 2 β 2 L = 16 9 10 ( 1 9 10 ) e 5.12 L / nm = 1.44 e 5.12 L / nm .

For a broad barrier with L 1 = 5.00 nm :

T ( L 1 , E 1 ) = 3.36 e 17.75 L 1 / nm = 3.36 e 17.75 · 5.00 nm / nm = 3.36 e −88 = 3.36 ( 6.2 × 10 −39 ) = 2.1 % × 10 −36 ,
T ( L 1 , E 2 ) = 1.44 e 5.12 L 1 / nm = 1.44 e 5.12 · 5.00 nm / nm = 1.44 e 25.6 = 1.44 ( 7.62 × 10 −12 ) = 1.1 % × 10 −9 .

For a narrower barrier with L 2 = 1.00 nm :

T ( L 2 , E 1 ) = 3.36 e 17.75 L 2 / nm = 3.36 e 17.75 · 1.00 nm / nm = 3.36 e −17.75 = 3.36 ( 5.1 × 10 −7 ) = 1.7 % × 10 −4 ,
T ( L 2 , E 2 ) = 1.44 e 5.12 L 2 / nm = 1.44 e 5.12 · 1.00 nm / nm = 1.44 e 5.12 = 1.44 ( 5.98 × 10 −3 ) = 0.86 % .

Significance

We see from these estimates that the probability of tunneling is affected more by the width of the potential barrier than by the energy of an incident particle. In today’s technologies, we can manipulate individual atoms on metal surfaces to create potential barriers that are fractions of a nanometer, giving rise to measurable tunneling currents. One of many applications of this technology is the scanning tunneling microscope (STM), which we discuss later in this section.

Check Your Understanding A proton with kinetic energy 1.00 eV is incident on a square potential barrier with height 10.00 eV. If the proton is to have the same transmission probability as an electron of the same energy, what must the width of the barrier be relative to the barrier width encountered by an electron?

L proton / L electron = m e / m p = 2.3 %

Got questions? Get instant answers now!

Radioactive decay

In 1928, Gamow identified quantum tunneling as the mechanism responsible for the radioactive decay of atomic nuclei. He observed that some isotopes of thorium, uranium, and bismuth disintegrate by emitting α -particles (which are doubly ionized helium atoms or, simply speaking, helium nuclei). In the process of emitting an α -particle, the original nucleus is transformed into a new nucleus that has two fewer neutrons and two fewer protons than the original nucleus. The α -particles emitted by one isotope have approximately the same kinetic energies. When we look at variations of these energies among isotopes of various elements, the lowest kinetic energy is about 4 MeV and the highest is about 9 MeV, so these energies are of the same order of magnitude. This is about where the similarities between various isotopes end.

When we inspect half-lives (a half-life is the time in which a radioactive sample loses half of its nuclei due to decay), different isotopes differ widely. For example, the half-life of polonium-214 is 160 µ s and the half-life of uranium is 4.5 billion years. Gamow explained this variation by considering a ‘spherical-box’ model of the nucleus, where α -particles can bounce back and forth between the walls as free particles. The confinement is provided by a strong nuclear potential at a spherical wall of the box. The thickness of this wall, however, is not infinite but finite, so in principle, a nuclear particle has a chance to escape this nuclear confinement. On the inside wall of the confining barrier is a high nuclear potential that keeps the α -particle in a small confinement. But when an α -particle gets out to the other side of this wall, it is subject to electrostatic Coulomb repulsion and moves away from the nucleus. This idea is illustrated in [link] . The width L of the potential barrier that separates an α -particle from the outside world depends on the particle’s kinetic energy E . This width is the distance between the point marked by the nuclear radius R and the point R 0 where an α -particle emerges on the other side of the barrier, L = R 0 R . At the distance R 0 , its kinetic energy must at least match the electrostatic energy of repulsion, E = ( 4 π ε 0 ) −1 Z e 2 / R 0 (where + Z e is the charge of the nucleus). In this way we can estimate the width of the nuclear barrier,

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask