<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the statistical interpretation of the wave function
  • Use the wave function to determine probabilities
  • Calculate expectation values of position, momentum, and kinetic energy

In the preceding chapter, we saw that particles act in some cases like particles and in other cases like waves. But what does it mean for a particle to “act like a wave”? What precisely is “waving”? What rules govern how this wave changes and propagates? How is the wave function used to make predictions? For example, if the amplitude of an electron wave is given by a function of position and time, Ψ ( x , t ) , defined for all x , where exactly is the electron? The purpose of this chapter is to answer these questions.

Using the wave function

A clue to the physical meaning of the wave function Ψ ( x , t ) is provided by the two-slit interference of monochromatic light ( [link] ). (See also Electromagnetic Waves and Interference .) The wave function    of a light wave is given by E ( x , t ), and its energy density is given by | E | 2 , where E is the electric field strength. The energy of an individual photon depends only on the frequency of light, ε photon = h f , so | E | 2 is proportional to the number of photons. When light waves from S 1 interfere with light waves from S 2 at the viewing screen (a distance D away), an interference pattern is produced (part (a) of the figure). Bright fringes correspond to points of constructive interference of the light waves, and dark fringes correspond to points of destructive interference of the light waves (part (b)).

Suppose the screen is initially unexposed to light. If the screen is exposed to very weak light, the interference pattern appears gradually ( [link] (c), left to right). Individual photon hits on the screen appear as dots. The dot density is expected to be large at locations where the interference pattern will be, ultimately, the most intense. In other words, the probability (per unit area) that a single photon will strike a particular spot on the screen is proportional to the square of the total electric field, | E | 2 at that point. Under the right conditions, the same interference pattern develops for matter particles, such as electrons.

Part a shows monochromatic light of wavelength lambda emitted from a source, arriving as plane waves at a single slit, S. The waves pass through the slit ad form circular waves that arrive at a double slit, S sub 1 and S sub 2. The light rays emerge from two slits as semicircles overlapping one another. The interacting waves spread out and end on a screen where points of maximum, where the crests or troughs overlap, and minimum, where the crests from one slit overlap the troughs from the other, are marked. The pattern appears on the screen as a series of alternating bright and dark fringes. The fringes separation, y, is the distance between adjacent maxima. In part b, a photograph of the fringe pattern is shown. Part c shows how the pattern develops in time. Photos of the image at five times are shown. At first, only a few scattered bright points appear, apparently randomly, against a dark background. In the second image, we see more dots but not yet any discernible pattern. In the third image, we start to see that there are more dots in some parts of the image and fewer elsewhere. Vertical stripes of dense bright dots separated are clearly seen in the fourth image, and even more clearly in the fifth.
Two-slit interference of monochromatic light. (a) Schematic of two-slit interference; (b) light interference pattern; (c) interference pattern built up gradually under low-intensity light (left to right).

Visit this interactive simulation to learn more about quantum wave interference.

The square of the matter wave | Ψ | 2 in one dimension has a similar interpretation as the square of the electric field | E | 2 . It gives the probability that a particle will be found at a particular position and time per unit length, also called the probability density    . The probability ( P ) a particle is found in a narrow interval ( x , x + dx ) at time t is therefore

P ( x , x + d x ) = | Ψ ( x , t ) | 2 d x .

(Later, we define the magnitude squared for the general case of a function with “imaginary parts.”) This probabilistic interpretation of the wave function is called the Born interpretation    . Examples of wave functions and their squares for a particular time t are given in [link] .

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask