<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the origin of the shift in frequency and wavelength of the observed wavelength when observer and source moved toward or away from each other
  • Derive an expression for the relativistic Doppler shift
  • Apply the Doppler shift equations to real-world examples

As discussed in the chapter on sound, if a source of sound and a listener are moving farther apart, the listener encounters fewer cycles of a wave in each second, and therefore lower frequency, than if their separation remains constant. For the same reason, the listener detects a higher frequency if the source and listener are getting closer. The resulting Doppler shift in detected frequency occurs for any form of wave. For sound waves, however, the equations for the Doppler shift differ markedly depending on whether it is the source, the observer, or the air, which is moving. Light requires no medium, and the Doppler shift for light traveling in vacuum depends only on the relative speed of the observer and source.

The relativistic doppler effect

Suppose an observer in S sees light from a source in S moving away at velocity v ( [link] ). The wavelength of the light could be measured within S —for example, by using a mirror to set up standing waves and measuring the distance between nodes. These distances are proper lengths with S as their rest frame, and change by a factor 1 v 2 / c 2 when measured in the observer’s frame S , where the ruler measuring the wavelength in S is seen as moving.

In figure a: An observer is shown at the origin of a stationary frame S. The S prime frame is moving to the right with velocity v relative to frame S. A source at the origin of S prime is shown emitting a sinusoidal wave that propagates to the left. In figure b, six cycles of the wave are shown as seen by the observer and as seen by the source. The wavelength of the wave seen by the observer is longer than that of the wave seen by the source. The width of the six cycles as seen by the source is labeled as c delta t. The extra length to the end of the six cycles as seen by the observer is labeled as v delta t.
(a) When a light wave is emitted by a source fixed in the moving inertial frame S , the observer in S sees the wavelength measured in S . to be shorter by a factor 1 v 2 / c 2 . (b) Because the observer sees the source moving away within S , the wave pattern reaching the observer in S is also stretched by the factor ( c Δ t + v Δ t ) / ( c Δ t ) = 1 + v / c .

If the source were stationary in S , the observer would see a length c Δ t of the wave pattern in time Δ t . But because of the motion of S relative to S , considered solely within S , the observer sees the wave pattern, and therefore the wavelength, stretched out by a factor of

c Δ t period + v Δ t period c Δ t period = 1 + v c

as illustrated in (b) of [link] . The overall increase from both effects gives

λ obs = λ src ( 1 + v c ) 1 1 v 2 c 2 = λ src ( 1 + v c ) 1 ( 1 + v c ) ( 1 v c ) = λ src ( 1 + v c ) ( 1 v c )

where λ src is the wavelength of the light seen by the source in S and λ obs is the wavelength that the observer detects within S .

Red shifts and blue shifts

The observed wavelength λ obs of electromagnetic radiation is longer (called a “red shift”) than that emitted by the source when the source moves away from the observer. Similarly, the wavelength is shorter (called a “blue shift”) when the source moves toward the observer. The amount of change is determined by

λ obs = λ s 1 + v c 1 v c

where λ s is the wavelength in the frame of reference of the source, and v is the relative velocity of the two frames S and S . The velocity v is positive for motion away from an observer and negative for motion toward an observer. In terms of source frequency and observed frequency, this equation can be written as

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask