# 4.1 Single-slit diffraction

 Page 1 / 5
By the end of this section, you will be able to:
• Explain the phenomenon of diffraction and the conditions under which it is observed
• Describe diffraction through a single slit

After passing through a narrow aperture (opening), a wave propagating in a specific direction tends to spread out. For example, sound waves that enter a room through an open door can be heard even if the listener is in a part of the room where the geometry of ray propagation dictates that there should only be silence. Similarly, ocean waves passing through an opening in a breakwater can spread throughout the bay inside. ( [link] ). The spreading and bending of sound and ocean waves are two examples of diffraction    , which is the bending of a wave around the edges of an opening or an obstacle—a phenomenon exhibited by all types of waves.

The diffraction of sound waves is apparent to us because wavelengths in the audible region are approximately the same size as the objects they encounter, a condition that must be satisfied if diffraction effects are to be observed easily. Since the wavelengths of visible light range from approximately 390 to 770 nm, most objects do not diffract light significantly. However, situations do occur in which apertures are small enough that the diffraction of light is observable. For example, if you place your middle and index fingers close together and look through the opening at a light bulb, you can see a rather clear diffraction pattern, consisting of light and dark lines running parallel to your fingers.

## Diffraction through a single slit

Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or diffraction gratings, which we discussed in the chapter on interference. [link] shows a single-slit diffraction pattern . Note that the central maximum is larger than maxima on either side and that the intensity decreases rapidly on either side. In contrast, a diffraction grating ( Diffraction Gratings ) produces evenly spaced lines that dim slowly on either side of the center.

The analysis of single-slit diffraction is illustrated in [link] . Here, the light arrives at the slit, illuminating it uniformly and is in phase across its width. We then consider light propagating onwards from different parts of the same slit. According to Huygens’s principle    , every part of the wave front in the slit emits wavelets, as we discussed in The Nature of Light . These are like rays that start out in phase and head in all directions. (Each ray is perpendicular to the wave front of a wavelet.) Assuming the screen is very far away compared with the size of the slit, rays heading toward a common destination are nearly parallel. When they travel straight ahead, as in part (a) of the figure, they remain in phase, and we observe a central maximum. However, when rays travel at an angle $\theta$ relative to the original direction of the beam, each ray travels a different distance to a common location, and they can arrive in or out of phase. In part (b), the ray from the bottom travels a distance of one wavelength $\lambda$ farther than the ray from the top. Thus, a ray from the center travels a distance $\lambda \text{/}2$ less than the one at the bottom edge of the slit, arrives out of phase, and interferes destructively. A ray from slightly above the center and one from slightly above the bottom also cancel one another. In fact, each ray from the slit interferes destructively with another ray. In other words, a pair-wise cancellation of all rays results in a dark minimum in intensity at this angle. By symmetry, another minimum occurs at the same angle to the right of the incident direction (toward the bottom of the figure) of the light.

as a free falling object increases speed what is happening to the acceleration
of course g is constant
Alwielland
acceleration also inc
Usman
photo electrons doesn't emmit when electrons are free to move on surface of metal why?
What would be the minimum work function of a metal have to be for visible light(400-700)nm to ejected photoelectrons?
give any fix value to wave length
Rafi
40 cm into change mm
40cm=40.0×10^-2m =400.0×10^-3m =400mm. that cap(^) I have used above is to the power.
Prema
i.e. 10to the power -2 in the first line and 10 to the power -3 in the the second line.
Prema
there is mistake in my first msg correction is 40cm=40.0×10^-2m =400.0×10^-3m =400mm. sorry for the mistake friends.
Prema
40cm=40.0×10^-2m =400.0×10^-3m =400mm.
Prema
this msg is out of mistake. sorry friends​.
Prema
what is physics?
why we have physics
because is the study of mater and natural world
John
because physics is nature. it explains the laws of nature. some laws already discovered. some laws yet to be discovered.
Yoblaze
is this a physics forum
explain l-s coupling
how can we say dirac equation is also called a relativistic equation in one word
what is the electronic configration of Al
what's the signeficance of dirac equetion.?
what is the effect of heat on refractive index
As refractive index depend on other factors also but if we supply heat on any system or media its refractive index decrease. i.e. it is inversely proportional to the heat.
ganesh
you are correct
Priyojit
law of multiple
Wahid
if we heated the ice then the refractive index be change from natural water
Nepal
can someone explain normalization condition
Swati
yes
Chemist
1 millimeter is How many metres
1millimeter =0.001metre
Gitanjali
The photoelectric effect is the emission of electrons when light shines on a material.