<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Compare and contrast the six known quarks
  • Use quark composition of hadrons to determine the total charge of these particles
  • Explain the primary evidence for the existence of quarks

In the 1960s, particle physicists began to realize that hadrons are not elementary particles but are made of particles called quarks . (The name ‘quark’ was coined by the physicist Murray Gell-Mann , from a phrase in the James Joyce novel Finnegans Wake .) Initially, it was believed there were only three types of quarks, called up ( u ), down ( d ), and strange ( s ). However, this number soon grew to six—interestingly, the same as the number of leptons—to include charmed ( c ), bottom ( b ), and top ( t ).

All quarks are spin-half fermions ( s = 1 / 2 ) , have a fractional charge ( 1 / 3 or 2 / 3 e ) , and have baryon number B = 1 / 3 . Each quark has an antiquark with the same mass but opposite charge and baryon number. The names and properties of the six quarks are listed in [link] .

Quarks
Quark Charge (units of e ) Spin ( s ) Baryon number Strangeness number
Down ( d ) −1 / 3 1/2 1/3 0
Up ( u ) + 2 / 3 1/2 1/3 0
Strange ( s ) −1 / 3 1/2 1/3 −1
Charm ( c ) + 2 / 3 1/2 1/3 0
Bottom ( b ) −1 / 3 1/2 1/3 0
Top ( t ) + 2 / 3 1/2 1/3 0

Quark combinations

As mentioned earlier, quarks bind together in groups of two or three to form hadrons. Baryons are formed from three quarks. Sample baryons, including quark content and properties, are given in [link] . Interestingly, the delta plus ( Δ + ) baryon is formed from the same three quarks as the proton, but the total spin of the particle is 3/2 rather than 1/2. Similarly, the mass of Δ + with spin 3/2 is 1.3 times the mass of the proton, and the delta zero ( Δ 0 ) baryon with a spin 3/2 is 1.3 times the neutron mass. Evidently, the energy associated with the spin (or angular momentum) of the particle contributes to its mass energy. It is also interesting that no baryons are believed to exist with top quarks, because top quarks decay too quickly to bind to the other quarks in their production.

Baryon quarks
Name Symbol Quarks Charge (unit of e ) Spin ( s ) Mass ( GeV/ c 2 )
Proton p u u d 1 1/2 0.938
Neutron n u d d 0 1/2 0.940
Delta plus plus ++ u u u 2 3/2 1.232
Delta plus + u u d 1 3/2 1.232
Delta zero 0 u d d 0 3/2 1.232
Delta minus d d d 1 3/2 1.232
Lambda zero Λ 0 u d s 0 1/2 1.116
Positive sigma Σ + u u s 1 1/2 1.189
Neutral sigma Σ 0 u d s 0 1/2 1.192
Negative xi Ξ s d s −1 1/2 1.321
Neutral xi Ξ 0 s u s 0 1/2 1.315
Omega minus Ω s s s −1 3/2 1.672
Charmed lambda Λ C + u d c 1 1/2 2.281
Charmed bottom Λ b 0 u d b 0 1/2 5.619

Mesons are formed by two quarks—a quark-antiquark pair. Sample mesons, including quark content and properties, are given in [link] . Consider the formation of the pion ( π + = u d ). Based on its quark content, the charge of the pion is

2 3 e + 1 3 e = e .

Both quarks are spin-half ( s = ½ ), so the resultant spin is either 0 or 1. The spin of the π + meson is 0. The same quark-antiquark combination gives the rho ( ρ ) meson with spin 1. This meson has a mass approximately 5.5 times that of the π + meson.

Quark structure

Show that the quark composition given in [link] for Ξ 0 is consistent with the known charge, spin, and strangeness of this baryon.

Strategy

Ξ 0 is composed of two strange quarks and an up quark ( s u s ). We can add together the properties of quarks to predict the resulting properties of the Ξ 0 baryon.

Solution

The charge of the s quark is e / 3 and the charge of the u quark is 2 e /3. Thus, the combination ( s u s ) has no net charge, in agreement with the known charge of Ξ 0 . Since three spin 1 / 2 quarks can combine to produce a particle with spin of either 1/2 or 3/2, the quark composition is consistent with the known spin ( s = 1 / 2 ) of Ξ 0 . Finally, the net strangeness of the ( s u s ) combination is ( 1 ) + 0 + ( 1 ) = 2 , which also agrees with experiment.

Significance

The charge, spin, and strangeness of the Ξ 0 particle can be determined from the properties of its constituent quarks. The great diversity of baryons and mesons can be traced to the properties of just six quarks: up, down, charge, strange, top, and bottom.

Got questions? Get instant answers now!

Questions & Answers

what is force
Afework Reply
The different examples for collision
Afework
What is polarization and there are type
Muhammed Reply
Polarization is the process of transforming unpolarized light into polarized light. types of polarization 1. linear polarization. 2. circular polarization. 3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
Aishwarya Reply
how is tan ninety minus an angle equals to cot an angle?
Niicommey Reply
please I don't understand all about this things going on here
Jeremiah Reply
What is torque?
Matthew Reply
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force . Specifically, it is a force exerted at a distance from an object's axis of rotation. In the same way that a force applied to an object will cause it to move linearly, a torque applied to an object will cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So, a net torque will cause an object to rotate with an angular acceleration. Because all rotational motions have an axis of rotation, a torque must be defined about a rotational axis. A torque is a force applied to a point on an object about the axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
Marifel Reply
how to convert:m^3/s^2 all divided by kg to cm^3/s^2
Thibaza Reply
Is there any proof of existence of luminiferious aether ?
Zero Reply
mass conversion of 58.73kg =mg
Proactive Reply
is Space time fabric real
Godawari Reply
What's the relationship between the work function and the cut off frequency in the diagram above?
frankline Reply
due to the upthrust weight of the object varise with force in which the body fall into the water pendincular with the reflection of light with it
Gift
n=I/r
Gift
can someone explain what is going on here
falanga
so some pretty easy physics questions bring em
falanga
what is meant by fluctuated
Olasukanmi Reply
If n=cv then how v=cn? and if n=c/v then how v=cn?
Natanim
convert feet to metre
Mbah Reply
what is electrolysis
Mbah
Electrolysis is the chemical decomposition of electrolyte either in molten state or solution to conduct electricity
Ayomide
class ninekasindhtextbookurdusave
Ayesha Reply
can someone help explain why v2/c2 is =1/2 Using The Lorentz Transformation For Time Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati
Jennifer
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask