<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain what a continuous source charge distribution is and how it is related to the concept of quantization of charge
  • Describe line charges, surface charges, and volume charges
  • Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast with a continuous charge distribution    , which has at least one nonzero dimension. If a charge distribution is continuous rather than discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal pieces and treat each piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most practical cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore the discrete nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when we deal with a bucket of water as a continuous fluid, rather than a collection of H 2 O molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as shown in [link] .

Figure a shows a long rod with linear charge density lambda. A small segment of the rod is shaded and labeled d l. Figure b shows a surface with surface charge density sigma. A small area within the surface is shaded and labeled d A. Figure c shows a volume with volume charge density rho. A small volume within it is shaded and labeled d V. Figure d shows a surface with two regions shaded and labeled q 1 and q2. A point P is identified above (not on) the surface. A thin line indicates the distance from each of the shaded regions. The vectors E 1 and E 2 are drawn at point P and point away from the respective shaded region. E net is the vector sum of E 1 and E 2. In this case, it points up, away from the surface.
The configuration of charge differential elements for a (a) line charge, (b) sheet of charge, and (c) a volume of charge. Also note that (d) some of the components of the total electric field cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

  • λ charge per unit length ( linear charge density    ); units are coulombs per meter (C/m)
  • σ charge per unit area ( surface charge density    ); units are coulombs per square meter ( C / m 2 )
  • ρ charge per unit volume ( volume charge density    ); units are coulombs per cubic meter ( C / m 3 )

Then, for a line charge, a surface charge, and a volume charge, the summation in [link] becomes an integral and q i is replaced by d q = λ d l , σ d A , or ρ d V , respectively:

Point charge: E ( P ) = 1 4 π ε 0 i = 1 N ( q i r 2 ) r ^
Line charge: E ( P ) = 1 4 π ε 0 line ( λ d l r 2 ) r ^
Surface charge: E ( P ) = 1 4 π ε 0 surface ( σ d A r 2 ) r ^
Volume charge: E ( P ) = 1 4 π ε 0 volume ( ρ d V r 2 ) r ^

The integrals are generalizations of the expression for the field of a point charge. They implicitly include and assume the principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for dl , dA , or dV , as the case may be, expressed in terms of r , and also expressing the charge density function appropriately. It may be constant; it might be dependent on location.

Note carefully the meaning of r in these equations: It is the distance from the charge element ( q i , λ d l , σ d A , ρ d V ) to the location of interest, P ( x , y , z ) (the point in space where you want to determine the field). However, don’t confuse this with the meaning of r ^ ; we are using it and the vector notation E to write three integrals at once. That is, [link] is actually

E x ( P ) = 1 4 π ε 0 line ( λ d l r 2 ) x , E y ( P ) = 1 4 π ε 0 line ( λ d l r 2 ) y , E z ( P ) = 1 4 π ε 0 line ( λ d l r 2 ) z .

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask