<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the purpose of the electric field concept
  • Describe the properties of the electric field
  • Calculate the field of a collection of source charges of either sign

As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the electric forces acting on it, from all of the various source charges, located at their various positions. But what if we use a different test charge, one with a different magnitude, or sign, or both? Or suppose we have a dozen different test charges we wish to try at the same location? We would have to calculate the sum of the forces from scratch. Fortunately, it is possible to define a quantity, called the electric field    , which is independent of the test charge. It only depends on the configuration of the source charges, and once found, allows us to calculate the force on any test charge.

Defining a field

Suppose we have N source charges q 1 , q 2 , q 3 ,… , q N located at positions r 1 , r 2 , r 3 ,… , r N , applying N electrostatic forces on a test charge Q . The net force on Q is (see [link] )

F = F 1 + F 2 + F 3 + + F N = 1 4 π ε 0 ( Q q 1 r 1 2 r ^ 1 + Q q 2 r 2 2 r ^ 2 + Q q 3 r 3 2 r ^ 3 + + Q q N r 1 2 r ^ N ) = Q [ 1 4 π ε 0 ( q 1 r 1 2 r ^ 1 + q 2 r 2 2 r ^ 2 + q 3 r 3 2 r ^ 3 + + q N r 1 2 r ^ N ) ] .

We can rewrite this as

F = Q E

where

E 1 4 π ε 0 ( q 1 r 1 2 r ^ 1 + q 2 r 2 2 r ^ 2 + q 3 r 3 2 r ^ 3 + + q N r 1 2 r ^ N )

or, more compactly,

E ( P ) 1 4 π ε 0 i = 1 N q i r i 2 r ^ i .

This expression is called the electric field at position P = P ( x , y , z ) of the N source charges. Here, P is the location of the point in space where you are calculating the field and is relative to the positions r i of the source charges ( [link] ). Note that we have to impose a coordinate system to solve actual problems.

Eight source charges are shown as small spheres distributed within an x y z coordinate system. The sources are labeled q sub 1, q sub 2, and so on. Sources 1, 2, 4, 7 and 8 are shaded red and sources 3, 5, and 6 are shaded blue. A test point is also shown and labeled as point P. The electric field vectors due to each source is shown as an arrow at point P, pointing toward point P and labeled with the index of the associated source. Vector E 1 points away from q 1, E 2 away from q 2, E 4 away from q 4, E 7 away from q 7, and E 8 away from q 8. Vector E 3 points toward q 3, vector E 5 toward q 5, and vector E 6 toward q 6.
Each of these eight source charges creates its own electric field at every point in space; shown here are the field vectors at an arbitrary point P . Like the electric force, the net electric field obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically useful approach is to calculate the electric field and then use it to calculate the force on some test charge later, if needed. Different test charges experience different forces [link] , but it is the same electric field [link] . That being said, recall that there is no fundamental difference between a test charge and a source charge; these are merely convenient labels for the system of interest. Any charge produces an electric field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge is not subject to a force due to the electric field it generates. Charges are only subject to forces from the electric fields of other charges.

In this respect, the electric field E of a point charge is similar to the gravitational field g of Earth; once we have calculated the gravitational field at some point in space, we can use it any time we want to calculate the resulting force on any mass we choose to place at that point. In fact, this is exactly what we do when we say the gravitational field of Earth (near Earth’s surface) has a value of 9.81 m/s 2 , and then we calculate the resulting force (i.e., weight) on different masses. Also, the general expression for calculating g at arbitrary distances from the center of Earth (i.e., not just near Earth’s surface) is very similar to the expression for E : g = G M r 2 r ^ , where G is a proportionality constant, playing the same role for g as 1 4 π ε 0 does for E . The value of g is calculated once and is then used in an endless number of problems.

Questions & Answers

What are the factors that affect demand for a commodity
Florence Reply
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask