<< Chapter < Page Chapter >> Page >

The time constant τ L also tells us how quickly the induced voltage decays. At t = τ L , the magnitude of the induced voltage is

| V L ( τ L ) | = ε e −1 = 0.37 ε = 0.37 V ( 0 ) .

The voltage across the inductor therefore drops to about 37 % of its initial value after one time constant. The shorter the time constant τ L , the more rapidly the voltage decreases.

After enough time has elapsed so that the current has essentially reached its final value, the positions of the switches in [link] (a) are reversed, giving us the circuit in part (c). At t = 0 , the current in the circuit is I ( 0 ) = ε / R . With Kirchhoff’s loop rule, we obtain

I R + L d I d t = 0 .

The solution to this equation is similar to the solution of the equation for a discharging capacitor, with similar substitutions. The current at time t is then

I ( t ) = ε R e t / τ L .

The current starts at I ( 0 ) = ε / R and decreases with time as the energy stored in the inductor is depleted ( [link] ).

The time dependence of the voltage across the inductor can be determined from V L = L ( d I / d t ) :

V L ( t ) = ε e t / τ L .

This voltage is initially V L ( 0 ) = ε , and it decays to zero like the current. The energy stored in the magnetic field of the inductor, L I 2 / 2 , also decreases exponentially with time, as it is dissipated by Joule heating in the resistance of the circuit.

The graph of I versus t. The value of I at t equal to 0 is epsilon I R. I decreases with time till the curve reaches 0. At t equal to tau subscript L, the value of I is 0.37 epsilon I R.
Time variation of electric current in the RL circuit of [link] (c). The induced voltage across the coil also decays exponentially.

An RL Circuit with a source of emf

In the circuit of [link] (a), let ε = 2.0 V , R = 4.0 Ω , and L = 4.0 H . With S 1 closed and S 2 open ( [link] (b)), (a) what is the time constant of the circuit? (b) What are the current in the circuit and the magnitude of the induced emf across the inductor at t = 0 , at t = 2.0 τ L , and as t ?


The time constant for an inductor and resistor in a series circuit is calculated using [link] . The current through and voltage across the inductor are calculated by the scenarios detailed from [link] and [link] .


  1. The inductive time constant is
    τ L = L R = 4.0 H 4.0 Ω = 1.0 s .
  2. The current in the circuit of [link] (b) increases according to [link] :
    I ( t ) = ε R ( 1 e t / τ L ) .

    At t = 0 ,
    ( 1 e t / τ L ) = ( 1 1 ) = 0 ; so I ( 0 ) = 0 .

    At t = 2.0 τ L and t , we have, respectively,
    I ( 2.0 τ L ) = ε R ( 1 e −2.0 ) = ( 0.50 A ) ( 0.86 ) = 0.43 A ,

    I ( ) = ε R = 0.50 A .

    From [link] , the magnitude of the induced emf decays as
    | V L ( t ) | = ε e t / τ L .

    At t = 0 , t = 2.0 τ L , and as t , we obtain
    | V L ( 0 ) | = ε = 2.0 V , | V L ( 2.0 τ L ) | = ( 2.0 V ) e −2.0 = 0.27 V and | V L ( ) | = 0 .


If the time of the measurement were much larger than the time constant, we would not see the decay or growth of the voltage across the inductor or resistor. The circuit would quickly reach the asymptotic values for both of these. See [link] .

Figures a, b and c show the oscilloscope traces of voltage versus time of the voltage across source, the voltage across the inductor and the voltage across the resistor respectively. Figure a is a square wave varying from minus 12 volts to plus 12 volts, with a period from minus 10 ms to minus 0.001 ms. Figure b shows a square wave varying from minus 6 volts to plus 6 volts with a spike of 16 volts at the beginning of every crest and a spike of minus 16 volts at the beginning of every trough. The period is the same as that in figure a. Figure c shows a square wave varying from minus 0.3 to plus 0.3 volts, with spikes going out of the trace area in the positive direction at the beginnings of every crest and trough. The period of the wave is from minus 9.985 to plus 0.015 ms.
A generator in an RL circuit produces a square-pulse output in which the voltage oscillates between zero and some set value. These oscilloscope traces show (a) the voltage across the source; (b) the voltage across the inductor; (c) the voltage across the resistor.
Got questions? Get instant answers now!

An RL Circuit without a source of emf

After the current in the RL circuit of [link] has reached its final value, the positions of the switches are reversed so that the circuit becomes the one shown in [link] (c). (a) How long does it take the current to drop to half its initial value? (b) How long does it take before the energy stored in the inductor is reduced to 1.0 % of its maximum value?


The current in the inductor will now decrease as the resistor dissipates this energy. Therefore, the current falls as an exponential decay. We can also use that same relationship as a substitution for the energy in an inductor formula to find how the energy decreases at different time intervals.


  1. With the switches reversed, the current decreases according to
    I ( t ) = ε R e t / τ L = I ( 0 ) e t / τ L .

    At a time t when the current is one-half its initial value, we have
    I ( t ) = 0.50 I ( 0 ) so e t / τ L = 0.50 ,

    t = [ ln ( 0.50 ) ] τ L = 0.69 ( 1.0 s ) = 0.69 s ,

    where we have used the inductive time constant found in [link] .
  2. The energy stored in the inductor is given by
    U L ( t ) = 1 2 L [ I ( t ) ] 2 = 1 2 L ( ε R e t / τ L ) 2 = L ε 2 2 R 2 e −2 t / τ L .

    If the energy drops to 1.0 % of its initial value at a time t , we have
    U L ( t ) = ( 0.010 ) U L ( 0 ) or L ε 2 2 R 2 e −2 t / τ L = ( 0.010 ) L ε 2 2 R 2 .

    Upon canceling terms and taking the natural logarithm of both sides, we obtain
    2 t τ L = ln ( 0.010 ) ,

    t = 1 2 τ L ln ( 0.010 ) .

    Since τ L = 1.0 s , the time it takes for the energy stored in the inductor to decrease to 1.0 % of its initial value is
    t = 1 2 ( 1.0 s ) ln ( 0.010 ) = 2.3 s .


This calculation only works if the circuit is at maximum current in situation (b) prior to this new situation. Otherwise, we start with a lower initial current, which will decay by the same relationship.

Got questions? Get instant answers now!

Questions & Answers

why we can find a electric mirror image only in a infinite conducting....why not in finite conducting plate..?
Rima Reply
because you can't fit the boundary conditions.
what is the dimensions for VISCOUNSITY (U)
what is thermodynamics
Aniket Reply
the study of heat an other form of energy.
heat is internal kinetic energy of a body but it doesnt mean heat is energy contained in a body because heat means transfer of energy due to difference in temperature...and in thermo-dynamics we study cause, effect, application, laws, hypothesis and so on about above mentioned phenomenon in detail.
It is abranch of physical chemistry which deals with the interconversion of all form of energy
what is colamb,s law.?
Muhammad Reply
it is a low studied the force between 2 charges F=q.q`\r.r
what is the formula of del in cylindrical, polar media
Birengeso Reply
prove that the formula for the unknown resistor is Rx=R2 x R3 divided by R3,when Ig=0.
what is flux
Bundi Reply
Total number of field lines crossing the surface area
Basically flux in general is amount of anything...In Electricity and Magnetism it is the total no..of electric field lines or Magnetic field lines passing normally through the suface
what is temperature change
a bottle of soft drink was removed from refrigerator and after some time, it was observed that its temperature has increased by 15 degree Celsius, what is the temperature change in degree Fahrenheit and degree Celsius
process whereby the degree of hotness of a body (or medium) changes
where The letter "Q" is the heat transferred in an exchange in calories, "m" is the mass of the substance being heated in grams, "c" is its specific heat capacity and the static value, and "ΔT" is its change in temperature in degrees Celsius to reflect the change in temperature.
what was the temperature of the soft drink when it was removed ?
15 degree Celsius
15 degree
ok I think is just conversion
15 degree Celsius to Fahrenheit
0 degree Celsius = 32 Fahrenheit
15 degree Celsius = (15×1.8)+32 =59 Fahrenheit
I dont understand
the question said you should convert 15 degree Celsius to Fahrenheit
To convert temperatures in degrees Celsius to Fahrenheit, multiply by 1.8 (or 9/5) and add 32.
what is d final ans for Fahrenheit and Celsius
it said what is temperature change in Fahrenheit and Celsius
the 15 is already in Celsius
So the final answer for Fahrenheit is 59
what is d final ans for Fahrenheit and Celsius
what are the effects of placing a dielectric between the plates of a capacitor
Bundi Reply
increase the capacitance.
besides increasing the capacitance, is there any?
mechanical stiffness and small size
why for an ideal gas internal energy is directly proportional to thermodynamics temperature?
Anne Reply
two charged particles are 8.45cm apart. They are moved and the force on each of them is found to have tripled. How far are they now?
Martin Reply
what is flux
Bundi, flux is the number of electric field crossing a surface area
you right
determining dimensional correctness
determine dimensional correctness of,T=2π√L/g
somebody help me answer the question above
calculate the heat flow per square meter through a mineral roll insulation 5cm thick if the temperature on the two surfaces are 30degree Celsius and 20 degree Celsius respectively. thermal conduction of mineral roll is 0.04
akuribire Reply
what are the elementary compositions of a cell?
jackson Reply
poles, chemical
when a current pass through a material does the velocity varies
lovet Reply
what is spin entropy ?and disorder in ferromagnetic material
Nepal Reply
diagram of an hall effect sensor
Aweda Reply
Practice Key Terms 1

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?