<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Analyze circuits that have an inductor and resistor in series
  • Describe how current and voltage exponentially grow or decay based on the initial conditions

A circuit with resistance and self-inductance is known as an RL circuit. [link] (a) shows an RL circuit consisting of a resistor, an inductor, a constant source of emf, and switches S 1 and S 2 . When S 1 is closed, the circuit is equivalent to a single-loop circuit consisting of a resistor and an inductor connected across a source of emf ( [link] (b)). When S 1 is opened and S 2 is closed, the circuit becomes a single-loop circuit with only a resistor and an inductor ( [link] (c)).

Figure a shows a resistor R and an inductor L connected in series with two switches which are parallel to each other. Both switches are currently open. Closing switch S1 would connect R and L in series with a battery, whose positive terminal is towards L. Closing switch S2 would form a closed loop of R and L, without the battery. Figure b shows a closed circuit with R, L and the battery in series. The side of L towards the battery, is at positive potential. Current flows from the positive end of L, through it, to the negative end. Figure c shows R and L connected in series. The potential across L is reversed, but the current flows in the same direction as in figure b.
(a) An RL circuit with switches S 1 and S 2 . (b) The equivalent circuit with S 1 closed and S 2 open. (c) The equivalent circuit after S 1 is opened and S 2 is closed.

We first consider the RL circuit of [link] (b). Once S 1 is closed and S 2 is open, the source of emf produces a current in the circuit. If there were no self-inductance in the circuit, the current would rise immediately to a steady value of ε / R . However, from Faraday’s law, the increasing current produces an emf V L = L ( d I / d t ) across the inductor. In accordance with Lenz’s law, the induced emf counteracts the increase in the current and is directed as shown in the figure. As a result, I(t) starts at zero and increases asymptotically to its final value.

Applying Kirchhoff’s loop rule to this circuit, we obtain

ε L d I d t I R = 0 ,

which is a first-order differential equation for I(t) . Notice its similarity to the equation for a capacitor and resistor in series (See RC Circuits ). Similarly, the solution to [link] can be found by making substitutions in the equations relating the capacitor to the inductor. This gives

I ( t ) = ε R ( 1 e R t / L ) = ε R ( 1 e t / τ L ) ,

where

τ L = L / R

is the inductive time constant    of the circuit.

The current I(t) is plotted in [link] (a). It starts at zero, and as t , I(t) approaches ε / R asymptotically. The induced emf V L ( t ) is directly proportional to dI / dt , or the slope of the curve. Hence, while at its greatest immediately after the switches are thrown, the induced emf decreases to zero with time as the current approaches its final value of ε / R . The circuit then becomes equivalent to a resistor connected across a source of emf.

Figure a shows the graph of electric current I versus time t. Current increases with time in a curve which flattens out at epsilon I R. At t equal to tau subscript L, the value of I is 0.63 epsilon I R. Figure b shows the graph of magnitude of induced voltage, mod V subscript L, versus time t. Mod V subscript L starts at value epsilon and decreases with time till the curve reaches zero. At t equal to tau subscript L, the value of I is 0.37 epsilon.
Time variation of (a) the electric current and (b) the magnitude of the induced voltage across the coil in the circuit of [link] (b).

The energy stored in the magnetic field of an inductor is

U L = 1 2 L I 2 .

Thus, as the current approaches the maximum current ε / R , the stored energy in the inductor increases from zero and asymptotically approaches a maximum of L ( ε / R ) 2 / 2 .

The time constant τ L tells us how rapidly the current increases to its final value. At t = τ L , the current in the circuit is, from [link] ,

I ( τ L ) = ε R ( 1 e −1 ) = 0.63 ε R ,

which is 63 % of the final value ε / R . The smaller the inductive time constant τ L = L / R , the more rapidly the current approaches ε / R .

We can find the time dependence of the induced voltage across the inductor in this circuit by using V L ( t ) = L ( d I / d t ) and [link] :

V L ( t ) = L d I d t = ε e t / τ L .

The magnitude of this function is plotted in [link] (b). The greatest value of L ( d I / d t ) is ε ; it occurs when dI/dt is greatest, which is immediately after S 1 is closed and S 2 is opened. In the approach to steady state, dI/dt decreases to zero. As a result, the voltage across the inductor also vanishes as t .

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask