<< Chapter < Page Chapter >> Page >

Many decisions are made on the basis of the payback period: the time it will take through savings to equal the capital cost of an investment. Acceptable payback times depend upon the business or philosophy one has. (For some industries, a payback period is as small as 2 years.) Suppose you wish to install the extra insulation in the preceding problem. If energy cost $ 1.00 per million joules and the insulation was $4.00 per square meter, then calculate the simple payback time. Take the average Δ T for the 120-day heating season to be 15.0 ° C .

We found in the preceding problem that P = 126 Δ T W · ° C as baseline energy use. So the total heat loss during this period is Q = ( 126 J/s · ° C ) ( 15.0 ° C ) ( 120 days ) ( 86.4 × 10 3 s/day ) = 1960 × 10 6 J . At the cost of $1/MJ, the cost is $1960. From an earlier problem, the savings is 12% or $235/y. We need 150 m 2 of insulation in the attic. At $ 4 / m 2 , this is a $500 cost. So the payback period is $ 600 / ( $ 235 / y ) = 2.6 years (excluding labor costs).

Got questions? Get instant answers now!

Additional problems

In 1701, the Danish astronomer Ole Rømer proposed a temperature scale with two fixed points, freezing water at 7.5 degrees, and boiling water at 60.0 degrees. What is the boiling point of oxygen, 90.2 K, on the Rømer scale?

Got questions? Get instant answers now!

What is the percent error of thinking the melting point of tungsten is 3695 ° C instead of the correct value of 3695 K?

7.39 %

Got questions? Get instant answers now!

An engineer wants to design a structure in which the difference in length between a steel beam and an aluminum beam remains at 0.500 m regardless of temperature, for ordinary temperatures. What must the lengths of the beams be?

Got questions? Get instant answers now!

How much stress is created in a steel beam if its temperature changes from –15 ° C to 40 ° C but it cannot expand? For steel, the Young’s modulus Y = 210 × 10 9 N/m 2 from Stress, Strain, and Elastic Modulus . (Ignore the change in area resulting from the expansion.)

F A = ( 210 × 10 9 Pa ) ( 12 × 10 −6 / ° C ) ( 40 ° C ( −15 ° C ) ) = 1.4 × 10 8 N/m 2 .

Got questions? Get instant answers now!

A brass rod ( Y = 90 × 10 9 N/m 2 ) , with a diameter of 0.800 cm and a length of 1.20 m when the temperature is 25 ° C , is fixed at both ends. At what temperature is the force in it at 36,000 N?

Got questions? Get instant answers now!

A mercury thermometer still in use for meteorology has a bulb with a volume of 0.780 cm 3 and a tube for the mercury to expand into of inside diameter 0.130 mm. (a) Neglecting the thermal expansion of the glass, what is the spacing between marks 1 ° C apart? (b) If the thermometer is made of ordinary glass (not a good idea), what is the spacing?

a. 1.06 cm; b. 1.11 cm

Got questions? Get instant answers now!

Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150 MW by the radioactive decay of fission products. This heat transfer causes a rapid increase in temperature if the cooling system fails ( 1 watt = 1 joule/second or 1 W = 1 J/s and
1 MW = 1 megawatt ) . (a) Calculate the rate of temperature increase in degrees Celsius per second ( ° C/s ) if the mass of the reactor core is 1.60 × 10 5 kg and it has an average specific heat of 0.3349 kJ/kg · ° C . (b) How long would it take to obtain a temperature increase of 2000 ° C , which could cause some metals holding the radioactive materials to melt? (The initial rate of temperature increase would be greater than that calculated here because the heat transfer is concentrated in a smaller mass. Later, however, the temperature increase would slow down because the 500,000-kg steel containment vessel would also begin to heat up.)

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask