<< Chapter < Page Chapter >> Page >

Electromagnetic spectrum

The electromagnetic spectrum as a function of frequency. The different types according to wavelength are shown as well as everyday comparisons.

Electromagnetic radiation allows us to observe the world around us. Some materials and objects emit electromagnetic radiation and some reflect the electromagnetic radiation emitted by other objects (such as the Sun, a light bulb or a fire). When electromagnetic radiation comes from an object (whether the radiation is emitted or reflected by the object) and enters the eye, we see that object. Everything you see around you either emits or reflects electromagnetic radiation or both.

Electromagnetic radiation comes in a wide range of frequencies (or wavelengths) and the frequencies of radiation the human eye is sensitive to is only a very small part of it. The collection of all possible frequencies of electromagnetic radiation is called the electromagnetic spectrum, which (for convenience) is divided into sections (such as radio, microwave, infrared, visible, ultraviolet, X-rays and gamma-rays).

The electromagnetic spectrum is continuous (has no gaps) and infinite. In practice, we can only use electromagnetic radiation with wavelengths between (very roughly) 10 -14 m (very high energy gamma rays) and 10 15 m (very long wavelength radio waves) due to technological limitations in the detectors used to receive electromagnetic radiation and in the devices used to produce or emit electromagnetic radiation.

The various frequencies (or wavelengths) of electromagnetic radiation coming from a particular object or material depends on how the object or material reflects and/or emits electromagnetic radiation.

Wave nature of em radiation

  1. List one source of electromagnetic waves. Hint: consider the spectrum diagram and look at the names we give to different wavelengths.
  2. Explain how an EM wave propagates, with the aid of a diagram.
  3. What is the speed of light? What symbol is used to refer to the speed of light? Does the speed of light change?
  4. Do EM waves need a medium to travel through?

[link] lists the wavelength- and frequency ranges of the divisions of the electromagnetic spectrum.

Electromagnetic spectrum
Category Range of Wavelengths (nm) Range of Frequencies (Hz)
gamma rays < 1 > 3 × 10 19
X-rays 1-10 3 × 10 17 - 3 × 10 19
ultraviolet light 10-400 7 , 5 × 10 14 - 3 × 10 17
visible light 400-700 4 , 3 × 10 14 - 7 , 5 × 10 14
infrared 700- 10 5 3 × 10 12 - 4 , 3 × 10 19
microwave 10 5 - 10 8 3 × 10 9 - 3 × 10 12
radio waves > 10 8 < 3 × 10 9

Examples of some uses of electromagnetic waves are shown in [link] .

Uses of EM waves
Category Uses
gamma rays used to kill the bacteria in marshmallows and to sterilise medical equipment
X-rays used to image bone structures
ultraviolet light bees can see into the ultraviolet because flowers stand out more clearly at this frequency
visible light used by humans to observe the world
infrared night vision, heat sensors, laser metal cutting
microwave microwave ovens, radar
radio waves radio, television broadcasts

Em radiation

  1. Arrange the following types of EM radiation in order of increasing frequency: infrared, X-rays, ultraviolet, visible, gamma.
  2. Calculate the frequency of an EM wave with a wavelength of 400 nm.
  3. Give an example of the use of each type of EM radiation, i.e. gamma rays, X-rays, ultraviolet light, visible light, infrared, microwave and radio and TV waves.

The particle nature of electromagnetic radiation

When we talk of electromagnetic radiation as a particle, we refer to photons, which are packets of energy. The energy of the photon is related to the wavelength of electromagnetic radiation according to:

Planck's constant

Planck's constant is a physical constant named after Max Planck.

h = 6 , 626 × 10 - 34 J · s

The energy of a photon can be calculated using the formula: E = h f or E = h c λ . Where E is the energy of the photon in joules (J), h is planck's constant, c is the speed of light, f is the frequency in hertz (Hz) and λ is the wavelength in metres (m).

Calculate the energy of a photon with a frequency of 3 × 10 18  Hz

  1. E = h f = 6 , 6 × 10 - 34 × 3 × 10 18 = 2 × 10 - 15 J

What is the energy of an ultraviolet photon with a wavelength of 200 nm?

  1. We are required to calculate the energy associated with a photon of ultraviolet light with a wavelength of 200 nm.

    We can use:

    E = h c λ
  2. E = h c λ = ( 6 , 626 × 10 - 34 ) 3 × 10 8 200 × 10 - 9 = 9 , 939 × 10 - 10 J

Exercise - particle nature of em waves

  1. How is the energy of a photon related to its frequency and wavelength?
  2. Calculate the energy of a photon of EM radiation with a frequency of 10 12  Hz.
  3. Determine the energy of a photon of EM radiation with a wavelength of 600 nm.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science [caps]. OpenStax CNX. Sep 30, 2011 Download for free at http://cnx.org/content/col11305/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science [caps]' conversation and receive update notifications?

Ask