<< Chapter < Page Chapter >> Page >

Electrochemistry and batteries

You will remember from chapter [link] that a galvanic cell (also known as a voltaic cell) is a type of electrochemical cell where a chemical reaction produces electrical energy. The electromotive force (emf) of a galvanic cell is the difference in voltage between the two half cells that make it up. Galvanic cells have a number of applications, but one of the most important is their use in batteries . You will know from your own experience that we use batteries in a number of ways, including cars, torches, sound systems and cellphones to name just a few.

How batteries work

A battery is a device in which chemical energy is directly converted to electrical energy . It consists of one or more voltaic cells, each of which is made up of two half cells that are connected in series by a conductive electrolyte. The voltaic cells are connected in series in a battery. Each cell has a positive electrode (cathode), and a negative electrode (anode). These do not touch each other but are immersed in a solid or liquid electrolyte.

Each half cell has a net electromotive force (emf) or voltage. The voltage of the battery is the difference between the voltages of the half-cells. This potential difference between the two half cells is what causes an electric current to flow.

Batteries are usually divided into two broad classes:

  • Primary batteries irreversibly transform chemical energy to electrical energy. Once the supply of reactants has been used up, the battery can't be used any more.
  • Secondary batteries can be recharged, in other words, their chemical reactions can be reversed if electrical energy is supplied to the cell. Through this process, the cell returns to its original state. Secondary batteries can't be recharged forever because there is a gradual loss of the active materials and electrolyte. Internal corrosion can also take place.

Battery capacity and energy

The capacity of a battery, in other words its ability to produce an electric charge, depends on a number of factors. These include:

  • Chemical reactions The chemical reactions that take place in each of a battery's half cells will affect the voltage across the cell, and therefore also its capacity. For example, nickel-cadmium (NiCd) cells measure about 1.2 V, and alkaline and carbon-zinc cells both measure about 1.5 V. However, in other cells such as Lithium cells, the changes in electrochemical potential are much higher because of the reactions of lithium compounds, and so lithium cells can produce as much as 3 volts or more. The concentration of the chemicals that are involved will also affect a battery's capacity. The higher the concentration of the chemicals, the greater the capacity of the battery.
  • Quantity of electrolyte and electrode material in cell The greater the amount of electrolyte in the cell, the greater its capacity. In other words, even if the chemistry in two cells is the same, a larger cell will have a greater capacity than a small one. Also, the greater the surface area of the electrodes, the greater will be the capacity of the cell.
  • Discharge conditions A unit called an Ampere hour (Ah) is used to describe how long a battery will last. An ampere hour (more commonly known as an amp hour ) is the amount of electric charge that is transferred by a current of one ampere for one hour. Battery manufacturers use a standard method to rate their batteries. So, for example, a 100 Ah battery will provide a current of 5 A for a period of 20 hours at room temperature. The capacity of the battery will depend on the rate at which it is discharged or used. If a 100 Ah battery is discharged at 50 A (instead of 5 A), the capacity will be lower than expected and the battery will run out before the expected 2 hours. The relationship between the current, discharge time and capacity of a battery is expressed by Peukert's law :
    C p = I k t
    In the equation, 'C p ' represents the battery's capacity (Ah), I is the discharge current (A), k is the Peukert constant and t is the time of discharge (hours).

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask