<< Chapter < Page Chapter >> Page >

Chemical equilibrium

Having looked at factors that affect the rate of a reaction, we now need to ask some important questions. Does a reaction always proceed in the same direction or can it be reversible? In other words, is it always true that a reaction proceeds from reactants to products , or is it possible that sometimes, the reaction will reverse and the products will be changed back into the reactants ? And does a reaction always run its full course so that all the reactants are used up, or can a reaction reach a point where reactants are still present, but there does not seem to be any further change taking place in the reaction? The following demonstration might help to explain this.

Demonstration : liquid-vapour phase equilibrium

Apparatus and materials:

2 beakers; water; bell jar

Method:

  1. Half fill two beakers with water and mark the level of the water in each case.
  2. Cover one of the beakers with a bell jar.
  3. Leave the beakers and, over the course of a day or two, observe how the water level in the two beakers changes. What do you notice? Note: You could speed up this demonstration by placing the two beakers over a bunsen burner to heat the water. In this case, it may be easier to cover the second beaker with a glass cover.

Observations:

You should notice that in the beaker that is uncovered, the water level drops quickly because of evaporation. In the beaker that is covered, there is an initial drop in the water level, but after a while evaporation appears to stop and the water level in this beaker is higher than that in the one that is open. Note that the diagram below shows the situation ate time=0.

Discussion:

In the first beaker, liquid water becomes water vapour as a result of evaporation and the water level drops. In the second beaker, evaporation also takes place. However, in this case, the vapour comes into contact with the surface of the bell jar and it cools and condenses to form liquid water again. This water is returned to the beaker. Once condensation has begun, the rate at which water is lost from the beaker will start to decrease. At some point, the rate of evaporation will be equal to the rate of condensation above the beaker, and there will be no change in the water level in the beaker. This can be represented as follows:

l i q u i d v a p o u r

In this example, the reaction (in this case, a change in the phase of water) can proceed in either direction. In one direction there is a change in phase from liquid to vapour. But the reverse can also take place, when vapour condenses to form water again.

In a closed system it is possible for reactions to be reversible, such as in the demonstration above. In a closed system, it is also possible for a chemical reaction to reach equilibrium . We will discuss these concepts in more detail.

Open and closed systems

An open system is one in which matter or energy can flow into or out of the system. In the liquid-vapour demonstration we used, the first beaker was an example of an open system because the beaker could be heated or cooled (a change in energy ), and water vapour (the matter ) could evaporate from the beaker.

Questions & Answers

25 element of physics
musah Reply
an object will remain at rest or move at a constant velocity unless acted upon a net force
Lebogang Reply
thank you
Thabiso
law of inertia
Joan
an object resisting the change in velocity.
Thabiso
What is a molecule
Thabiso Reply
a molecule is a simplest structure unite of an elements
Else
thank you
Thabiso
Plz remind me the 1st Newton's law
Thabiso
Define the term functinal group of an organic compound
Kamvelihle Reply
a single atom or a group of atoms which is responsible for the property and function of an organic compound
Shandre
thanks😊
Kamvelihle
What's the relationship between intensity and the current?
Lufuno Reply
yu are Spi.ke spanish hola ele
Rolamf
cómo se llama el video donde disquete salgo yo
Rolamf
The intensity doesn't effect the current.
Mosa
what does the word emitted mean?
Mwinga Reply
to be ejected or released
Khathutshelo
Ok thanks
Mwinga
Released
Mosa
what are the hooke laws
Tyriek Reply
what's that
Mosa
what do really asked in exam
Leiyo Reply
questions
Kamvelihle
lmaooo
itsssjust
hi please help me how to balance redox reactions?
Brian Reply
Which equation do u wanna balance
Rifumo
i tried to write it but my phone just can't write it Cr2 O72-(aq) + H2S (aq) Cr3 (aq) + S(s)
Brian
show is the equation
Pride
us
Pride
hello. what is the difference between a primary, secondary and tertiary alcohol
Thokozani Reply
primary the C=bonded to 1 Carbon atom.... secondary=bonded to 2 carbon atoms tertiary=bonded to 3 carbon atoms
Christina
I hope you're answered
Christina
thanks Christina
Baningi
My pleasure
Christina
Thank you Christina. This is very helpful 😀👍👍💯
Thokozani
💯💯
Thokozani
Anytime Thokozani
Christina
How to calculate pH?
Thabo
thank you guys i didn't know about the primary, secondary and tertiary alcohols
Brian
thank you Christina
Brian
Hey guys which topic does AC nd DC generator falls
Phumelele
electrodynamics
Christina
thank you
Phumelele
can somebody help me with functional isomers
Baningi Reply
function isomer has the same molecular formula but different functional group
Thokozani
what's momentum
Luvelo Reply
the product of an objects mass times velocity. it is mainly prevalent in collisions.
tyrique
momentum
Sesethu
in order to produce an interference pattern, the waves used must be what?
Methane contains C and H. This compound is
Juan Reply
ketones's functional group
Moloi Reply
Why does the carboxyl group have acidc properties?
Evi Reply
carboxylic acids
tyrique

Get the best Siyavula textbooks: gr... course in your pocket!





Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask