<< Chapter < Page Chapter >> Page >

Transistor

The diode is the simplest semiconductor device, made up of a p-type semiconductor and an n-type semiconductor in contact. It can conduct in only one direction, but it cannot control the size of an electric current. Transistors are more complicated electronic components which can control the size of the electric current flowing through them.

This enables them to be used in amplifiers. A small signal from a microphone or a radio antenna can be used to control the transistor. In response, the transistor will then increase and decrease a much larger current which flows through the speakers.

Interesting fact

One of the earliest popular uses of transistors was in cheap and portable radios. Before that, radios were much more expensive and contained glass valves which were fragile and needed replacing. In some parts of the world you can still hear people talking about their `transistor' — they mean their portable radio.

You can also use a small current to turn the transistor on and off. The transistor then controls a more complicated or powerful current through other components. When a transistor is used in this way it is said to be in switching mode as it is acting as a remotely controlled switch. As we shall see in the final sections of this chapter, switching circuits can be used in a computer to process and store digital information. A computer would not work without the millions (or billions) of transistors in it.

There are two main types of transistor - bipolar transistors (NPN or PNP), and field effect transistors (FETs). Both use doped semiconductors, but in different ways. You are mainly required to know about field effect transistors (FETs), however we have to give a brief description of bipolar transistors so that you see the difference.

Bipolar transistors

Bipolar transistors are made of a doped semiconductor `sandwich'. In an NPN transistor, a very thin layer of p-type semiconductor is in between two thicker layers of n-type semiconductor. This is shown in [link] . Similarly an PNP transistor consists of a very thin n-type layer in between two thicker layers of p-type semiconductor.

An NPN transistor. This is a type of bipolar transistor.

In an NPN transistor a small current of electrons flows from the emitter (E) to the base (B). Simultaneously, a much larger current of electrons flows from the emitter (E) to the collector (C). If you lower the number of electrons able to leave the transistor at the base (B), the transistor automatically reduces the number of electrons flowing from emitter (E) to collector (C). Similarly, if you increase the current of electrons flowing out of the base (B), the transistor automatically also increases the current of electrons flowing from emitter (E) to collector (C). The transistor is designed so that the current of electrons from emitter to collector ( I E C ) is proportional to the current of electrons from emitter to base ( I E B ). The constant of proportionality is known as the current gain β . So I E C = β I E B .

How does it do it? The answer comes from our work with diodes. Electrons arriving at the emitter (n-type semiconductor) will naturally flow through into the central p-type since the base-emitter junction is forward biased. However if none of these electrons are removed from the base, the electrons flowing into the base from the emitter will fill all of the available `holes'. Accordingly, a large depletion band will be set up. This will act as an insulator preventing current flow into the collector as well. On the other hand, if the base is connected to a positive voltage, a small number of electrons will be removed by the base connection. This will prevent the `holes' in the base becoming filled up, and no depletion band will form. While some electrons from the emitter leave via the base connection, the bulk of them flow straight on to the collector. You may wonder how the electrons get from the base into the collector (it seems to be reverse biased). The answer is complicated, but the important fact is that the p-type layer is extremely thin. As long as there is no depletion layer, the bulk of the electrons will have no difficulty passing straight from the n-type emitter into the n-type collector. A more satisfactory answer can be given to a university student once band theory has been explained.

Questions & Answers

25 element of physics
musah Reply
an object will remain at rest or move at a constant velocity unless acted upon a net force
Lebogang Reply
thank you
Thabiso
law of inertia
Joan
an object resisting the change in velocity.
Thabiso
What is a molecule
Thabiso Reply
a molecule is a simplest structure unite of an elements
Else
thank you
Thabiso
Plz remind me the 1st Newton's law
Thabiso
Define the term functinal group of an organic compound
Kamvelihle Reply
a single atom or a group of atoms which is responsible for the property and function of an organic compound
Shandre
thanks😊
Kamvelihle
What's the relationship between intensity and the current?
Lufuno Reply
yu are Spi.ke spanish hola ele
Rolamf
cómo se llama el video donde disquete salgo yo
Rolamf
The intensity doesn't effect the current.
Mosa
what does the word emitted mean?
Mwinga Reply
to be ejected or released
Khathutshelo
Ok thanks
Mwinga
Released
Mosa
what are the hooke laws
Tyriek Reply
what's that
Mosa
what do really asked in exam
Leiyo Reply
questions
Kamvelihle
lmaooo
itsssjust
hi please help me how to balance redox reactions?
Brian Reply
Which equation do u wanna balance
Rifumo
i tried to write it but my phone just can't write it Cr2 O72-(aq) + H2S (aq) Cr3 (aq) + S(s)
Brian
show is the equation
Pride
us
Pride
hello. what is the difference between a primary, secondary and tertiary alcohol
Thokozani Reply
primary the C=bonded to 1 Carbon atom.... secondary=bonded to 2 carbon atoms tertiary=bonded to 3 carbon atoms
Christina
I hope you're answered
Christina
thanks Christina
Baningi
My pleasure
Christina
Thank you Christina. This is very helpful 😀👍👍💯
Thokozani
💯💯
Thokozani
Anytime Thokozani
Christina
How to calculate pH?
Thabo
thank you guys i didn't know about the primary, secondary and tertiary alcohols
Brian
thank you Christina
Brian
Hey guys which topic does AC nd DC generator falls
Phumelele
electrodynamics
Christina
thank you
Phumelele
can somebody help me with functional isomers
Baningi Reply
function isomer has the same molecular formula but different functional group
Thokozani
what's momentum
Luvelo Reply
the product of an objects mass times velocity. it is mainly prevalent in collisions.
tyrique
momentum
Sesethu
in order to produce an interference pattern, the waves used must be what?
Methane contains C and H. This compound is
Juan Reply
ketones's functional group
Moloi Reply
Why does the carboxyl group have acidc properties?
Evi Reply
carboxylic acids
tyrique

Get the best Siyavula textbooks: gr... course in your pocket!





Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask