<< Chapter < Page Chapter >> Page >

Work done by constant forces and contact forces

The simplest work to evaluate is that done by a force that is constant in magnitude and direction. In this case, we can factor out the force; the remaining integral is just the total displacement, which only depends on the end points A and B , but not on the path between them:

W A B = F · A B d r = F · ( r B r A ) = | F | | r B r A | cos θ (constant force).

We can also see this by writing out [link] in Cartesian coordinates and using the fact that the components of the force are constant:

W A B = path A B F · d r = path A B ( F x d x + F y d y + F z d z ) = F x A B d x + F y A B d y + F z A B d z = F x ( x B x A ) + F y ( y B y A ) + F z ( z B z A ) = F · ( r B r A ) .

[link] (a) shows a person exerting a constant force F along the handle of a lawn mower, which makes an angle θ with the horizontal. The horizontal displacement of the lawn mower, over which the force acts, is d . The work done on the lawn mower is W = F · d = F d cos θ , which the figure also illustrates as the horizontal component of the force times the magnitude of the displacement.

Figure a shows a person pushing a lawn mower with a constant force. The displacement is a horizontal vector d pointing to the right. The force F is a vector pointing down and to the right, along the handle of the lawn mower, at an angle theta below the horizontal. The component of the force parallel to the displacement is F cosine theta. The equation W equals F d cosine theta is shown in the figure. Figure b shows a person holding a briefcase. The force F is upward. The displacement is zero. Figure c shows the person in b walking horizontally while holding the briefcase. The force F is upward, as in b. The displacement d is horizontal to the right. Theta equals ninety degrees and cosine theta equals zero.
Work done by a constant force. (a) A person pushes a lawn mower with a constant force. The component of the force parallel to the displacement is the work done, as shown in the equation in the figure. (b) A person holds a briefcase. No work is done because the displacement is zero. (c) The person in (b) walks horizontally while holding the briefcase. No work is done because cos θ is zero.

[link] (b) shows a person holding a briefcase. The person must exert an upward force, equal in magnitude to the weight of the briefcase, but this force does no work, because the displacement over which it acts is zero. So why do you eventually feel tired just holding the briefcase, if you’re not doing any work on it? The answer is that muscle fibers in your arm are contracting and doing work inside your arm, even though the force your muscles exert externally on the briefcase doesn’t do any work on it. (Part of the force you exert could also be tension in the bones and ligaments of your arm, but other muscles in your body would be doing work to maintain the position of your arm.)

In [link] (c), where the person in (b) is walking horizontally with constant speed, the work done by the person on the briefcase is still zero, but now because the angle between the force exerted and the displacement is 90 ° ( F perpendicular to d ) and cos 90 ° = 0 .

Calculating the work you do to push a lawn mower

How much work is done on the lawn mower by the person in [link] (a) if he exerts a constant force of 75.0 N at an angle 35 ° below the horizontal and pushes the mower 25.0 m on level ground?

Strategy

We can solve this problem by substituting the given values into the definition of work done on an object by a constant force, stated in the equation W = F d cos θ . The force, angle, and displacement are given, so that only the work W is unknown.

Solution

The equation for the work is

W = F d cos θ .

Substituting the known values gives

W = ( 75.0 N ) ( 25.0 m ) cos ( 35.0 ° ) = 1.54 × 10 3 J .

Significance

Even though one and a half kilojoules may seem like a lot of work, we will see in Potential Energy and Conservation of Energy that it’s only about as much work as you could do by burning one sixth of a gram of fat.

Got questions? Get instant answers now!

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask