<< Chapter < Page Chapter >> Page >
By the end of the section, you will be able to:
  • Explain the difference between mass and weight
  • Explain why falling objects on Earth are never truly in free fall
  • Describe the concept of weightlessness

Mass and weight are often used interchangeably in everyday conversation. For example, our medical records often show our weight in kilograms but never in the correct units of newtons. In physics, however, there is an important distinction. Weight is the pull of Earth on an object. It depends on the distance from the center of Earth. Unlike weight, mass does not vary with location. The mass of an object is the same on Earth, in orbit, or on the surface of the Moon.

Units of force

The equation F net = m a is used to define net force in terms of mass, length, and time. As explained earlier, the SI unit of force is the newton. Since F net = m a ,

1 N = 1 kg · m/s 2 .

Although almost the entire world uses the newton for the unit of force, in the United States, the most familiar unit of force is the pound (lb), where 1 N = 0.225 lb. Thus, a 225-lb person weighs 1000 N.

Weight and gravitational force

When an object is dropped, it accelerates toward the center of Earth. Newton’s second law says that a net force on an object is responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly called its weight     w , or its force due to gravity acting on an object of mass m . Weight can be denoted as a vector because it has a direction; down is, by definition, the direction of gravity, and hence, weight is a downward force. The magnitude of weight is denoted as w . Galileo was instrumental in showing that, in the absence of air resistance, all objects fall with the same acceleration g . Using Galileo’s result and Newton’s second law, we can derive an equation for weight.

Consider an object with mass m falling toward Earth. It experiences only the downward force of gravity, which is the weight w . Newton’s second law says that the magnitude of the net external force on an object is F net = m a . We know that the acceleration of an object due to gravity is g , or a = g . Substituting these into Newton’s second law gives us the following equations.


The gravitational force on a mass is its weight. We can write this in vector form, where w is weight and m is mass, as

w = m g .

In scalar form, we can write

w = m g .

Since g = 9.80 m/s 2 on Earth, the weight of a 1.00-kg object on Earth is 9.80 N:

w = m g = ( 1.00 kg ) ( 9.80 m/s 2 ) = 9.80 N .

When the net external force on an object is its weight, we say that it is in free fall    , that is, the only force acting on the object is gravity. However, when objects on Earth fall downward, they are never truly in free fall because there is always some upward resistance force from the air acting on the object.

Acceleration due to gravity g varies slightly over the surface of Earth, so the weight of an object depends on its location and is not an intrinsic property of the object. Weight varies dramatically if we leave Earth’s surface. On the Moon, for example, acceleration due to gravity is only 1.67 m/s 2 . A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on the Moon.

Questions & Answers

velocity is a physician vector quantity; both magnitude and direction needed to define it. the scalar absolute value ( magnitude) of velocity is called "speed being a coherent derived unite whose quantity is measured in SI ( metric system) as metres per second (m/s) or SI base unit of (m . s^-1).
Kessy Reply
number of lines passing through area which is placed at some angle. these line are are produced by charge(+ or -).
M. Reply
Junaid Reply
define electric flux? find the electric field due to a long strainght line
Aslam Reply
Clay Matthews, a linebacker for the Green Bay Packers, can reach a speed of 10.0 m/s. At the start of a play, Matthews runs downfield at 43° with respect to the 50-yard line (the +x-axis) and covers 7.8 m in 1 s. He then runs straight down the field at 90° with respect to the 50-yard line (that is, in the +y-direction) for 17 m, with an elapsed time of 2.9 s. (Express your answers in vector form.) (a) What is Matthews's final displacement (in m) from the start of the play?
Justin Reply
What is his average velocity (in m/s)?
A machine at a post office sends packages out a chute and down a ramp to be loaded into delivery vehicles. (a) Calculate the acceleration of a box heading down a 17.4° slope, assuming the coefficient of friction for a parcel on waxed wood is 0.100. (b) Find the angle of the slope down which this box could move at a constant velocity. You can neglect air resistance in both parts.
Austin Reply
what principle is applicable in projectile motion
Mkapa Reply
does rocket and satellite follow the same principle??? which principle do both of these follow???
Abhishek Reply
According to d'Broglie's concept of matter waves matter behaves like wave and the wavelength is h/p. but actually there is not only a wave but a wave packet wich is defined by a wave function and that wave function can defines everything about the particle but restricted by the uncertainty principle
Ravi Reply
what phenomenon describes Matter behave as a wave???
simple definition of wave
Prajwal Reply
Carls Reply
can anyone help me with this problem
A projectile is shot at a hill, the base of which is 300 m away. The projectile is shot at 60°60° above the horizontal with an initial speed of 75 m/s. The hill can be approximated by a plane sloped at 20°20° to the horizontal. Relative to the coordinate system shown in the following figure, the equation of this straight line is y=(tan20°)x−109.y=(tan20°)x−109. Where on the hill does the projectile land?
what is velocity
Abel Reply
hi, Musa,this moment a lateral
Arzoodan Reply
what is moment
Musa Reply
Practice Key Terms 2

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?