# 1.2 Units and standards  (Page 5/17)

 Page 5 / 17

Check Your Understanding Restate $4.79\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{5}\text{kg}$ using a metric prefix such that the resulting number is bigger than one but less than 1000.

$4.79\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{2}$ Mg or 479 Mg

## Summary

• Systems of units are built up from a small number of base units, which are defined by accurate and precise measurements of conventionally chosen base quantities. Other units are then derived as algebraic combinations of the base units.
• Two commonly used systems of units are English units and SI units. All scientists and most of the other people in the world use SI, whereas nonscientists in the United States still tend to use English units.
• The SI base units of length, mass, and time are the meter (m), kilogram (kg), and second (s), respectively.
• SI units are a metric system of units, meaning values can be calculated by factors of 10. Metric prefixes may be used with metric units to scale the base units to sizes appropriate for almost any application.

## Conceptual questions

Identify some advantages of metric units.

Conversions between units require factors of 10 only, which simplifies calculations. Also, the same basic units can be scaled up or down using metric prefixes to sizes appropriate for the problem at hand.

What are the SI base units of length, mass, and time?

What is the difference between a base unit and a derived unit? (b) What is the difference between a base quantity and a derived quantity? (c) What is the difference between a base quantity and a base unit?

a. Base units are defined by a particular process of measuring a base quantity whereas derived units are defined as algebraic combinations of base units. b. A base quantity is chosen by convention and practical considerations. Derived quantities are expressed as algebraic combinations of base quantities. c. A base unit is a standard for expressing the measurement of a base quantity within a particular system of units. So, a measurement of a base quantity could be expressed in terms of a base unit in any system of units using the same base quantities. For example, length is a base quantity in both SI and the English system, but the meter is a base unit in the SI system only.

For each of the following scenarios, refer to [link] and [link] to determine which metric prefix on the meter is most appropriate for each of the following scenarios. (a) You want to tabulate the mean distance from the Sun for each planet in the solar system. (b) You want to compare the sizes of some common viruses to design a mechanical filter capable of blocking the pathogenic ones. (c) You want to list the diameters of all the elements on the periodic table. (d) You want to list the distances to all the stars that have now received any radio broadcasts sent from Earth 10 years ago.

## Problems

The following times are given using metric prefixes on the base SI unit of time: the second. Rewrite them in scientific notation without the prefix. For example, 47 Ts would be rewritten as $4.7\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{13}\text{s.}$ (a) 980 Ps; (b) 980 fs; (c) 17 ns; (d) $577\phantom{\rule{0.2em}{0ex}}\mu \text{s}.$

The following times are given in seconds. Use metric prefixes to rewrite them so the numerical value is greater than one but less than 1000. For example, $7.9\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-2}\text{s}$ could be written as either 7.9 cs or 79 ms. (a) $9.57\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{5}\text{s;}$ (b) 0.045 s; (c) $5.5\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-7}\text{s;}$ (d) $3.16\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{7}\text{s.}$

a. 957 ks; b. 4.5 cs or 45 ms; c. 550 ns; d. 31.6 Ms

The following lengths are given using metric prefixes on the base SI unit of length: the meter. Rewrite them in scientific notation without the prefix. For example, 4.2 Pm would be rewritten as $4.2\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{15}\text{m.}$ (a) 89 Tm; (b) 89 pm; (c) 711 mm; (d) $0.45\phantom{\rule{0.2em}{0ex}}\mu \text{m}\text{.}$

The following lengths are given in meters. Use metric prefixes to rewrite them so the numerical value is bigger than one but less than 1000. For example, $7.9\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-2}\text{m}$ could be written either as 7.9 cm or 79 mm. (a) $7.59\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{7}\text{m;}$ (b) 0.0074 m; (c) $8.8\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-11}\text{m;}$ (d) $1.63\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{13}\text{m.}$

a. 75.9 Mm; b. 7.4 mm; c. 88 pm; d. 16.3 Tm

The following masses are written using metric prefixes on the gram. Rewrite them in scientific notation in terms of the SI base unit of mass: the kilogram. For example, 40 Mg would be written as $4\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}\text{kg.}$ (a) 23 mg; (b) 320 Tg; (c) 42 ng; (d) 7 g; (e) 9 Pg.

The following masses are given in kilograms. Use metric prefixes on the gram to rewrite them so the numerical value is bigger than one but less than 1000. For example, $7\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}\text{kg}$ could be written as 70 cg or 700 mg. (a) $3.8\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-5}\text{kg;}$ (b) $2.3\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{17}\text{kg;}$ (c) $2.4\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-11}\text{kg;}$ (d) $8\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{15}\text{kg;}$ (e) $4.2\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\text{kg.}$

a. 3.8 cg or 38 mg; b. 230 Eg; c. 24 ng; d. 8 Eg e. 4.2 g

A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of radius 2R will be
2F
Jacob
The difference between vector and scaler quantity
vector has both magnitude & direction but scalar has only magnitude
Manash
my marunong ba dto mag prove ng geometry
ron
how do I find resultant of four forces at a point
Inusah
use the socatoa rule
kingsley
draw force diagram, then work out the direction of force.
Rongfang
In a closed system of forces... Summation of forces in any direction or plane is zero... Resolve if there is a need to then add forces in a particular plane or direction.. Say the x direction... Equate it tk zero
Jacob
define moment of inertia
what is Euler s theorem
what is thermocouple?
joining of two wire of different material forming two junctions. If one is hot and another is cold the it will produce emf...
joining of two metal of different materials to form a junction in one is hot & another is cold
Manash
define dimensional analysis
mathematical derivation?
Hira
explain what Newtonian mechanics is.
a system of mechanics based of Newton laws motion this is easy difenation of mean...
Arzoodan
what is the meaning of single term,mechanics?
jyotirmayee
mechanics is the science related to the behavior of physical bodies when some external force is applied to them
Lalita
SO ASK What is Newtonian mechanics in physics? Newtonian physics, also calledNewtonian or classical mechanics, is the description of mechanical events—those that involve forces acting on matter—using the laws of motion and gravitation formulated in the late seventeenth century by English physicist
Suleiman
can any one send me the best reference book for physics?
Prema
concept of physics by HC verma, Fundamentals of Physics, university of physics
tq u.
Prema
these are the best physics books one can fond both theory and applications.
can any one suggest best book for maths with lot of Tricks?
Vivek
what is the water height in barometer?
SUNEELL
13.5*76 cm. because Mercury is 13.5 times dense than Mercury
LOVE
water is 13.5 times dense than the Mercury
LOVE
plz tell me frnds the best reference book for physics along with the names of authors.
Prema
i recomended the reference book for physics from library University of Dublin or library Trinity college
Arzoodan
A little help here... . 1. Newton's laws of Motion, are they applicable to motions of all speeds? 2.state the speeds which are applicable to Newtons laws of Motion
Derek
mechanics which follows Newtons law
Manash
The definition of axial and polar vector .
Arpita
polar vector which have a starting point or pt. of applications is,force,displacement
jyotirmayee
axial vector represent rotational effect and act along the axis of rotation b
jyotirmayee
explain the rule of free body diagram
The polar coordinates of a point are 4π/3 and 5.50m. What are its Cartesian coordinates?
application of elasticity
good
Anwar
a boy move with a velocity of 5m/s in 4s. What is the distance covered by the boy?
What is the time required for the sun to reach the earth?
anthony
24th hr's, your question is amazing joke 😂
Arzoodan
velocity 20 m, s
Ahmed
the sun shines always and the earth rotates so the question should specify a place on earth and that will be 24hrs
Opoku
20m
Gabriel
good nice work
Anwar
20m
Evelyn
why 20?.
Arzoodan
v =distance/time so make distance the subject from the equation
Evelyn
20m
Olaide
exatly
Arzoodan
what is differemce between principles and laws
plz
Anwar
how can a 50W light bulb use more energy than a 1000W oven?
That depends on how much time we use them
Phrangsngi
It states that, " If two vectors are represented in magnitude and direction by the two sides of a triangle, then their resultant is represented in magnitude and direction by the third side of the triangl " .
Nabin
thanks yaar
Pawan
And it's formula
Pawan
Manash
plank constant is what
plank constant is a phisical constant that the central quantum
Arzoodan
links energy of a photon to it's wave length