17.4 Normal modes of a standing sound wave  (Page 6/9)

 Page 6 / 9

Conceptual questions

You are given two wind instruments of identical length. One is open at both ends, whereas the other is closed at one end. Which is able to produce the lowest frequency?

The fundamental wavelength of a tube open at each end is 2 L , where the wavelength of a tube open at one end and closed at one end is 4 L . The tube open at one end has the lower fundamental frequency, assuming the speed of sound is the same in both tubes.

What is the difference between an overtone and a harmonic? Are all harmonics overtones? Are all overtones harmonics?

Two identical columns, open at both ends, are in separate rooms. In room A , the temperature is $T=20\text{°}\text{C}$ and in room B , the temperature is $T=25\text{°}\text{C}$ . A speaker is attached to the end of each tube, causing the tubes to resonate at the fundamental frequency. Is the frequency the same for both tubes? Which has the higher frequency?

The wavelength in each is twice the length of the tube. The frequency depends on the wavelength and the speed of the sound waves. The frequency in room B is higher because the speed of sound is higher where the temperature is higher.

Problems

(a) What is the fundamental frequency of a 0.672-m-long tube, open at both ends, on a day when the speed of sound is 344 m/s? (b) What is the frequency of its second harmonic?

What is the length of a tube that has a fundamental frequency of 176 Hz and a first overtone of 352 Hz if the speed of sound is 343 m/s?

0.974 m

The ear canal resonates like a tube closed at one end. (See [link]Figure 17_03_HumEar[/link].) If ear canals range in length from 1.80 to 2.60 cm in an average population, what is the range of fundamental resonant frequencies? Take air temperature to be $37.0\text{°}\text{C,}$ which is the same as body temperature.

Calculate the first overtone in an ear canal, which resonates like a 2.40-cm-long tube closed at one end, by taking air temperature to be $37.0\text{°}\text{C}$ . Is the ear particularly sensitive to such a frequency? (The resonances of the ear canal are complicated by its nonuniform shape, which we shall ignore.)

11.0 kHz; The ear is not particularly sensitive to this frequency, so we don’t hear overtones due to the ear canal.

A crude approximation of voice production is to consider the breathing passages and mouth to be a resonating tube closed at one end. (a) What is the fundamental frequency if the tube is 0.240 m long, by taking air temperature to be $37.0\text{°}\text{C}$ ? (b) What would this frequency become if the person replaced the air with helium? Assume the same temperature dependence for helium as for air.

A 4.0-m-long pipe, open at one end and closed at one end, is in a room where the temperature is $T=22\text{°}\text{C}\text{.}$ A speaker capable of producing variable frequencies is placed at the open end and is used to cause the tube to resonate. (a) What is the wavelength and the frequency of the fundamental frequency? (b) What is the frequency and wavelength of the first overtone?

a. $v=344.08\phantom{\rule{0.2em}{0ex}}\text{m/s,}\phantom{\rule{0.5em}{0ex}}{\lambda }_{1}=16.00\phantom{\rule{0.2em}{0ex}}\text{m,}\phantom{\rule{0.5em}{0ex}}{f}_{1}=21.51\phantom{\rule{0.2em}{0ex}}\text{Hz;}$
b. ${\lambda }_{3}=5.33\phantom{\rule{0.2em}{0ex}}\text{m,}\phantom{\rule{0.5em}{0ex}}{f}_{3}=64.56\phantom{\rule{0.2em}{0ex}}\text{Hz}$

A 4.0-m-long pipe, open at both ends, is placed in a room where the temperature is $T=25\text{°}\text{C}\text{.}$ A speaker capable of producing variable frequencies is placed at the open end and is used to cause the tube to resonate. (a) What are the wavelength and the frequency of the fundamental frequency? (b) What are the frequency and wavelength of the first overtone?

A nylon guitar string is fixed between two lab posts 2.00 m apart. The string has a linear mass density of $\mu =7.20\phantom{\rule{0.2em}{0ex}}\text{g/m}$ and is placed under a tension of 160.00 N. The string is placed next to a tube, open at both ends, of length L . The string is plucked and the tube resonates at the $n=3$ mode. The speed of sound is 343 m/s. What is the length of the tube?

$\begin{array}{}\\ \\ \\ {v}_{\text{string}}=149.07\phantom{\rule{0.2em}{0ex}}\text{m/s,}\phantom{\rule{0.5em}{0ex}}{\lambda }_{3}=1.33\phantom{\rule{0.2em}{0ex}}\text{m,}\phantom{\rule{0.5em}{0ex}}{f}_{3}=112.08\phantom{\rule{0.2em}{0ex}}\text{Hz}\hfill \\ {\lambda }_{1}=\frac{v}{{f}_{1}},\phantom{\rule{0.5em}{0ex}}L=1.53\phantom{\rule{0.2em}{0ex}}\text{m}\hfill \end{array}$

A 512-Hz tuning fork is struck and placed next to a tube with a movable piston, creating a tube with a variable length. The piston is slid down the pipe and resonance is reached when the piston is 115.50 cm from the open end. The next resonance is reached when the piston is 82.50 cm from the open end. (a) What is the speed of sound in the tube? (b) How far from the open end will the piston cause the next mode of resonance?

Students in a physics lab are asked to find the length of an air column in a tube closed at one end that has a fundamental frequency of 256 Hz. They hold the tube vertically and fill it with water to the top, then lower the water while a 256-Hz tuning fork is rung and listen for the first resonance. (a) What is the air temperature if the resonance occurs for a length of 0.336 m? (b) At what length will they observe the second resonance (first overtone)?

a. $22.0\text{°C}$ ; b. 1.01 m

lists 5 drawing instruments and their uses
that is a question you can find on Google, anyway of top of my head, compass, ruler, protractor, try square, triangles.
Rongfang
A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of radius 2R will be
2F
Jacob
The difference between vector and scaler quantity
vector has both magnitude & direction but scalar has only magnitude
Manash
my marunong ba dto mag prove ng geometry
ron
how do I find resultant of four forces at a point
Inusah
use the socatoa rule
kingsley
draw force diagram, then work out the direction of force.
Rongfang
In a closed system of forces... Summation of forces in any direction or plane is zero... Resolve if there is a need to then add forces in a particular plane or direction.. Say the x direction... Equate it tk zero
Jacob
define moment of inertia
it is the tendency for a body to continue in motion if is or continue to be at rest if it is.
prince
what is Euler s theorem
what is thermocouple?
joining of two wire of different material forming two junctions. If one is hot and another is cold the it will produce emf...
joining of two metal of different materials to form a junction in one is hot & another is cold
Manash
define dimensional analysis
mathematical derivation?
Hira
explain what Newtonian mechanics is.
a system of mechanics based of Newton laws motion this is easy difenation of mean...
Arzoodan
what is the meaning of single term,mechanics?
jyotirmayee
mechanics is the science related to the behavior of physical bodies when some external force is applied to them
Lalita
SO ASK What is Newtonian mechanics in physics? Newtonian physics, also calledNewtonian or classical mechanics, is the description of mechanical events—those that involve forces acting on matter—using the laws of motion and gravitation formulated in the late seventeenth century by English physicist
Suleiman
can any one send me the best reference book for physics?
Prema
concept of physics by HC verma, Fundamentals of Physics, university of physics
tq u.
Prema
these are the best physics books one can fond both theory and applications.
can any one suggest best book for maths with lot of Tricks?
Vivek
what is the water height in barometer?
SUNEELL
13.5*76 cm. because Mercury is 13.5 times dense than Mercury
LOVE
water is 13.5 times dense than the Mercury
LOVE
plz tell me frnds the best reference book for physics along with the names of authors.
Prema
i recomended the reference book for physics from library University of Dublin or library Trinity college
Arzoodan
A little help here... . 1. Newton's laws of Motion, are they applicable to motions of all speeds? 2.state the speeds which are applicable to Newtons laws of Motion
Derek
mechanics which follows Newtons law
Manash
The definition of axial and polar vector .
Arpita
polar vector which have a starting point or pt. of applications is,force,displacement
jyotirmayee
axial vector represent rotational effect and act along the axis of rotation b
jyotirmayee
prove Newton's first law of motion
prince
explain the rule of free body diagram
The polar coordinates of a point are 4π/3 and 5.50m. What are its Cartesian coordinates?
application of elasticity
good
Anwar
a boy move with a velocity of 5m/s in 4s. What is the distance covered by the boy?
What is the time required for the sun to reach the earth?
anthony
24th hr's, your question is amazing joke 😂
Arzoodan
velocity 20 m, s
Ahmed
the sun shines always and the earth rotates so the question should specify a place on earth and that will be 24hrs
Opoku
20m
Gabriel
good nice work
Anwar
20m
Evelyn
why 20?.
Arzoodan
v =distance/time so make distance the subject from the equation
Evelyn
20m
Olaide
exatly
Arzoodan
what is differemce between principles and laws
plz
Anwar
how can a 50W light bulb use more energy than a 1000W oven?
That depends on how much time we use them
Phrangsngi
It states that, " If two vectors are represented in magnitude and direction by the two sides of a triangle, then their resultant is represented in magnitude and direction by the third side of the triangl " .
Nabin
thanks yaar
Pawan
And it's formula
Pawan
Manash